MATH 4220 HOMEWORK 0 SOLUTIONS

Exercise 3: By (i), we must have either $i \in \mathcal{P}$ or $-i \in \mathcal{P}$; suppose the former. Then $-i = i^3 \in \mathcal{P}$ by (iii), contradicting (i). Similarly, if $-i \in \mathcal{P}$, then $(-i)^3 = i \in \mathcal{P}$ by (iii), again contradicting (i).

Exercise 4: For z = x + iy and w = u + iv, we have

$$\overline{zw} = \overline{(xu - vy) + i(yu + xv)} = (xu - vy) - i(yu + xv),$$
$$\overline{zw} = (x - iy)(u - iv) = (xu - yv) - i(yu + xv),$$

so $\overline{zw} = \overline{zw}$. By induction, we have $\overline{z^k} = \overline{z^k}$ whenever $k \ge 0$. Applying this to z^{-1} in place of z and using $\overline{z^{-1}} = \overline{z^{-1}}$ gives the claim when k < 0 (assuming $z \ne 0$).

Exercise 5: The equation A + B = z is as follows:

$$(a\cos(\theta_1) + b\cos(\theta_2)) + i(a\sin(\theta_1) + b\sin(\theta_2)) = l + id,$$

so that $d = a \sin(\theta_1) + b \sin(\theta_2)$ and $l = a \cos(\theta_1) + b \cos(\theta_2)$. We now solve for θ_2 in terms of θ_1 and d:

$$\theta_2 = \cos^{-1}\left(\frac{l - a\cos(\theta_1)}{b}\right).$$

Combining equations gives the desired formula.