MATH 4220 HOMEWORK 0 SOLUTIONS

Exercise 3: $\mathrm{By}(i)$, we must have either $i \in \mathcal{P}$ or $-i \in \mathcal{P}$; suppose the former. Then $-i=i^{3} \in \mathcal{P}$ by (iii), contradicting (i). Similarly, if $-i \in \mathcal{P}$, then $(-i)^{3}=i \in \mathcal{P}$ by (iii), again contradicting (i).

Exercise 4: For $z=x+i y$ and $w=u+i v$, we have

$$
\begin{gathered}
\overline{z w}=\overline{(x u-v y)+i(y u+x v)}=(x u-v y)-i(y u+x v), \\
\overline{z w}=(x-i y)(u-i v)=(x u-y v)-i(y u+x v),
\end{gathered}
$$

so $\overline{z w}=\overline{z w}$. By induction, we have $\bar{z}^{k}=\overline{z^{k}}$ whenever $k \geq 0$. Applying this to z^{-1} in place of z and using $\bar{z}^{-1}=\overline{z^{-1}}$ gives the claim when $k<0$ (assuming $z \neq 0$).

Exercise 5: The equation $A+B=z$ is as follows:

$$
\left(a \cos \left(\theta_{1}\right)+b \cos \left(\theta_{2}\right)\right)+i\left(a \sin \left(\theta_{1}\right)+b \sin \left(\theta_{2}\right)\right)=l+i d,
$$

so that $d=a \sin \left(\theta_{1}\right)+b \sin \left(\theta_{2}\right)$ and $l=a \cos \left(\theta_{1}\right)+b \cos \left(\theta_{2}\right)$. We now solve for θ_{2} in terms of θ_{1} and d :

$$
\theta_{2}=\cos ^{-1}\left(\frac{l-a \cos \left(\theta_{1}\right)}{b}\right)
$$

Combining equations gives the desired formula.

