MATH 4220 HOMEWORK 1 SOLUTIONS

Exercise 1

1. For any $\theta \in \mathbb{R}$, we have $\left|e^{i \theta}\right|^{2}=|\cos (\theta)+i \sin (\theta)|^{2}=\cos ^{2}(\theta)+\sin ^{2}(\theta)=1$. Conversely, suppose $z \in \mathbb{C}$, so that we can write $z=r e^{i \theta}$ for some $r>0$ and $\theta \in \mathbb{R}$. Then $1=|z|=r$. Finally, θ is not unique: $e^{i \theta}=e^{i(\theta+2 \pi k)}$ for any $k \in \mathbb{Z}$.
2. In multivariable calculus notation, $f(t)=(\cos (\omega t), \sin (\omega t))$, which is a counterclockwise parametrization if and only if $\omega>0$. The velocity is

$$
f^{\prime}(t)=(-\omega \sin (\omega t), \omega \cos (\omega t))
$$

and the speed is

$$
\left\|f^{\prime}(t)\right\|=\sqrt{\omega^{2} \sin ^{2}(\omega t)+\omega^{2} \cos ^{2}(\omega t)}=|\omega|
$$

3. (a) This is a circle with radius e.
(b) This is a circle with radius e^{-1}.
(c) This is a slanted ray.
(d) This is a spiral.

Exercise 2

Set $\alpha:=1+\omega_{m}^{l}+\cdots+\omega_{m}^{(m-1) l}$. Then

$$
\begin{aligned}
\omega_{m}^{l} \alpha & =\omega_{m}^{l}+\omega_{m}^{2 l}+\cdots+\omega_{m}^{(m-1) l}+\omega_{m}^{m l} \\
& =\omega_{m}^{l}+\omega_{m}^{2 l}+\cdots+\omega_{m}^{(m-1) l}+1 \\
& =\alpha
\end{aligned}
$$

In other words, $\alpha\left(1-\omega_{m}^{l}\right)=0$, but because l is not divisible by m, we have $l / m \notin \mathbb{Z}$, hence

$$
\omega_{m}^{l}=e^{2 \pi i \frac{l}{m}} \neq 1
$$

This means that $\alpha=0$.

Exercise 3

D consists of a disjoint circle of radius 1 and a half-plane containing all points (strictly) to the right of $x=2$. The partial derivatives of u are zero because the functions are locally constant (so the difference quotients are all zero when $|h|$ is small. This does not contradict Theorem 1 because D is not a domain (in particular, it is not connected).

Exercise 4

Suppose u is a real-valued function satisfying

$$
\frac{\partial u}{\partial x}=\frac{2 x}{x^{2}+y^{2}}, \quad \frac{\partial u}{\partial y}=\frac{2 y}{x^{2}+y^{2}}
$$

in the annulus A.
Method 1: Integrate in x to get (for x near 2)

$$
u(x, 0)=u(2,0)+\int_{2}^{x} \frac{\partial u}{\partial x}\left(x^{\prime}, 0\right) d x^{\prime}=\left.\log \left(\left(x^{\prime}\right)^{2}\right)\right|_{x^{\prime}=2} ^{x^{\prime}=x}=u(2,0)+\log \left(x^{2}\right)-\log (4)
$$

Setting $a:=u(2,0)-\log (4)$, we then integrate in y (for y near 0) to get

$$
\begin{aligned}
u(x, y)-u(x, 0) & =\int_{0}^{y} \frac{\partial u}{\partial y}\left(x, y^{\prime}\right) d y^{\prime}=\left.\log \left(x^{2}+\left(y^{\prime}\right)^{2}\right)\right|_{y^{\prime}=0} ^{y^{\prime}=y} \\
& =\log \left(x^{2}+y^{2}\right)-\log \left(x^{2}\right)
\end{aligned}
$$

Combining equations gives $u(x, y)=\log \left(x^{2}+y^{2}\right)+a$. While we have only shown that this holds near $(2,0)$, we observe that this function is well-defined on all of A, and has the prescribed partial derivatives. If v is another function with the same partial derivatives, then the partial derivatives of $u-v$ are all zero, so $u-v$ is constant since A is connected.
(Note that the choice of $(2,0)$ as a basepoint for our initial integration was only for the sake of convenience, and in fact we could have chosen any $\left(x_{0}, y_{0}\right) \in A$.

Method 2: In polar coordinates, since $x=r \cos (\theta)$ and $y=r \sin (\theta)$, we have

$$
\begin{gathered}
\frac{\partial u}{\partial r}=\frac{\partial x}{\partial r} \frac{\partial u}{\partial x}+\frac{\partial y}{\partial r} \frac{\partial u}{\partial y}=\cos (\theta) \frac{2 r \cos (\theta)}{r^{2}}+\sin (\theta) \frac{2 r \sin (\theta)}{r^{2}}=\frac{2}{r} \\
\frac{\partial u}{\partial \theta}=\frac{\partial x}{\partial \theta} \frac{\partial u}{\partial x}+\frac{\partial y}{\partial \theta} \frac{\partial u}{\partial y}=-r \sin (\theta) \frac{2 r \cos (\theta)}{r^{2}}+r \cos (\theta) \frac{2 r \sin (\theta)}{r^{2}}=0 .
\end{gathered}
$$

Fixing r and integrating in θ, we see that $\theta \mapsto u(r, \theta)$ is constant. That is, u is radial, so is determined by its values along a single ray. We integrate from $r=2$ to get

$$
u(r, \theta)=u(1, \theta)+\int_{2}^{r} \frac{\partial u}{\partial r}(s, \theta) d s=\log \left(r^{2}\right)-\log (4)
$$

The function is thus determined by a choice of $a=u(1, \theta)-\log (4)$ for some choice of angle θ, and $u(r, \theta)=a+\log \left(r^{2}\right)$.
Note that in this method, we implicitly used that A is connected, since our paths of integration connected any point of the annulus to the point $(2,0)$.

Method 3: Guess the function u, and note that any other function v with the same partial derivatives must differ by a constant since the partial derivatives of $u-v$ are all zero.

Exercise 5 (a) This is the upper semi-disk rotated counter-clockwise by 45 degrees (or $\pi / 4$ radians.
(b) The same as (a), but clockwise.
(c) The same as (a), but 135 degree (or $3 \pi / 4$ radians).

Exercise 6 (Note there are some small inaccuracies in this exercise because it seems to assume $a \neq 0$. In addition, a function of the form $f(z)=a z+b$ is usually called an affine transformation, with the terminology linear transformation reserved for the case where $b=0$.)
Write $a=r e^{i \theta}$. Define $F(z):=z+b, G(z):=e^{i \theta} z$, and $H(z):=r z$. Then F is a translation, G is a rotation, and H is a magnification (more commonly called a dilation). Moreover,

$$
(F \circ G \circ H)(z)=(G \circ H)(z)+b=e^{i \theta} G(z)+b=r e^{i \theta} z+b=a z+b .
$$

Clearly, translations preserve lines and circles. A rotation takes lines to lines with different angles, and circles to circles with possibly different centers. A magnification takes a circle to a circle with possibly different radius, and a line to a parallel line. These statements are all geometrically obvious (though they can be verified, for example, by fixing a parametrization, or an equation whose solution is each shape.)

