
MATH 4220 HOMEWORK 1 SOLUTIONS

Exercise 1
1. For any θ ∈ R, we have |eiθ|2 = | cos(θ) + i sin(θ)|2 = cos2(θ) + sin2(θ) = 1.
Conversely, suppose z ∈ C, so that we can write z = reiθ for some r > 0 and θ ∈ R.
Then 1 = |z| = r. Finally, θ is not unique: eiθ = ei(θ+2πk) for any k ∈ Z.

2. In multivariable calculus notation, f(t) = (cos(ωt), sin(ωt)), which is a counter-
clockwise parametrization if and only if ω > 0. The velocity is

f ′(t) = (−ω sin(ωt), ω cos(ωt)),

and the speed is

||f ′(t)|| =
√
ω2 sin2(ωt) + ω2 cos2(ωt) = |ω|.

3. (a) This is a circle with radius e.
(b) This is a circle with radius e−1.
(c) This is a slanted ray.
(d) This is a spiral.

Exercise 2
Set α := 1 + ωlm + · · ·+ ω

(m−1)l
m . Then

ωlmα = ωlm + ω2l
m + · · ·+ ω(m−1)l

m + ωmlm

= ωlm + ω2l
m + · · ·+ ω(m−1)l

m + 1

= α.

In other words, α(1−ωlm) = 0, but because l is not divisible bym, we have l/m /∈ Z,
hence

ωlm = e2πi
l
m 6= 1.

This means that α = 0.

Exercise 3
D consists of a disjoint circle of radius 1 and a half-plane containing all points
(strictly) to the right of x = 2. The partial derivatives of u are zero because the
functions are locally constant (so the difference quotients are all zero when |h| is
small. This does not contradict Theorem 1 because D is not a domain (in particu-
lar, it is not connected).
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Exercise 4
Suppose u is a real-valued function satisfying

∂u

∂x
=

2x

x2 + y2
,

∂u

∂y
=

2y

x2 + y2

in the annulus A.

Method 1: Integrate in x to get (for x near 2)

u(x, 0) = u(2, 0) +

∫ x

2

∂u

∂x
(x′, 0)dx′ = log((x′)2)

∣∣x′=x

x′=2
= u(2, 0) + log(x2)− log(4).

Setting a := u(2, 0)− log(4), we then integrate in y (for y near 0) to get

u(x, y)− u(x, 0) =
∫ y

0

∂u

∂y
(x, y′)dy′ = log(x2 + (y′)2)

∣∣y′=y
y′=0

= log(x2 + y2)− log(x2).

Combining equations gives u(x, y) = log(x2 + y2) + a. While we have only shown
that this holds near (2, 0), we observe that this function is well-defined on all of A,
and has the prescribed partial derivatives. If v is another function with the same
partial derivatives, then the partial derivatives of u − v are all zero, so u − v is
constant since A is connected.
(Note that the choice of (2, 0) as a basepoint for our initial integration was only for
the sake of convenience, and in fact we could have chosen any (x0, y0) ∈ A.

Method 2: In polar coordinates, since x = r cos(θ) and y = r sin(θ), we have

∂u

∂r
=
∂x

∂r

∂u

∂x
+
∂y

∂r

∂u

∂y
= cos(θ)

2r cos(θ)

r2
+ sin(θ)

2r sin(θ)

r2
=

2

r
,

∂u

∂θ
=
∂x

∂θ

∂u

∂x
+
∂y

∂θ

∂u

∂y
= −r sin(θ)2r cos(θ)

r2
+ r cos(θ)

2r sin(θ)

r2
= 0.

Fixing r and integrating in θ, we see that θ 7→ u(r, θ) is constant. That is, u is
radial, so is determined by its values along a single ray. We integrate from r = 2
to get

u(r, θ) = u(1, θ) +

∫ r

2

∂u

∂r
(s, θ)ds = log(r2)− log(4).

The function is thus determined by a choice of a = u(1, θ)− log(4) for some choice
of angle θ, and u(r, θ) = a+ log(r2).
Note that in this method, we implicitly used that A is connected, since our paths
of integration connected any point of the annulus to the point (2, 0).

Method 3: Guess the function u, and note that any other function v with the
same partial derivatives must differ by a constant since the partial derivatives of
u− v are all zero.

Exercise 5 (a) This is the upper semi-disk rotated counter-clockwise by 45 degrees
(or π/4 radians.
(b) The same as (a), but clockwise.
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(c) The same as (a), but 135 degree (or 3π/4 radians).

Exercise 6 (Note there are some small inaccuracies in this exercise because it seems
to assume a 6= 0. In addition, a function of the form f(z) = az+ b is usually called
an affine transformation, with the terminology linear transformation reserved for
the case where b = 0.)
Write a = reiθ. Define F (z) := z + b, G(z) := eiθz, and H(z) := rz. Then F is
a translation, G is a rotation, and H is a magnification (more commonly called a
dilation). Moreover,

(F ◦G ◦H)(z) = (G ◦H)(z) + b = eiθG(z) + b = reiθz + b = az + b.

Clearly, translations preserve lines and circles. A rotation takes lines to lines with
different angles, and circles to circles with possibly different centers. A magnifica-
tion takes a circle to a circle with possibly different radius, and a line to a parallel
line. These statements are all geometrically obvious (though they can be verified,
for example, by fixing a parametrization, or an equation whose solution is each
shape.)


