
MATH 4220 HOMEWORK 2 SOLUTIONS

Exercise 1
(1) Without loss of generality, we can assume z 6= 0. Let ε > 0, and set a := |z|.
Then, for any n ∈ N, we have |zn − 0| = an, so for any n ≥ loga(ε), we have

an = an−loga(ε)ε < ε

since 0 ≤ a < 1. We may therefore take N to be any positive integer which is at
least loga(ε).

(2) Let ε > 0. For any n ∈ N,

|e i
n − 1|2 = |1− cos(1/n)|2 + | sin(1/n)|2 ≤ 1

n4
+

1

n2
≤ 2

n2
.

Thus, if take N to be any integer greater than
√
2
ε , then whenever n ≥ N , we have

|e i
n − 1| < ε.

(3) Fix ε > 0. Because limn→∞ zn = 1+ i, we can find N ∈ N such that |zn − (1 +
i)| < 1

6ε whenever n ≥ N . Then, whenever n ≥ N , we have

|(6zn − 4)− (2 + 6i)| = 6|zn − (1 + i)| < 6 · ε
6
= ε.

Exercise 2:
(1) We write z = x+ iy and z0 = x0+ iy0. First suppose limz→z0 f(z) = w0, and fix
ε > 0. Then we can find δ > 0 such that |f(z)−w0| < ε whenever 0 < |z− z0| < δ.
It follows that

|u(x, y)− u0| ≤
√
|u(x, y)− u0|2 + |v(x, y)− v0|2 = |f(z)− w0| < ε,

whenever 0 < |z−z0| < δ, but |(x, y)−(x0, y0)| = |z−z0|, so lim(x,y)→(x0,y0) u(x, y) =
u0. The proof that lim(x,y)→(x0,y0) v(x, y) = v0 is similar.

Conversely, suppose lim(x,y)→(x0,y0) u(x, y) = u0 and lim(x,y)→(x0,y0) v(x, y) =
v0. Fix ε > 0, and then choose δ > 0 such that |u(x0, y0)−u0| < ε

2 and |v(x0, y0)−
v0| < ε

2 whenever 0 < |(x, y)− (x0, y0)| < δ. Then

|f(z)− w0| =
√
|u(x, y)− u0|2 + |v(x, y)− v0|2 <

√
ε2

4
+
ε2

4
=

ε√
2
< ε

whenever 0 < |(x, y)− (x0, y0)| < δ (again using that |(x, y)− (x0, y0)| = |z − z0|),
so limz→z0 f(z) = w0.

(2) By part (1), it suffices to show note that the real part u(x, y) = ex cos(y) and
imaginary part v(x, y) = ex sin(y) are continuous as functions R2 → R. In fact,
this implies

lim
(x,y)→(x0,y0)

u(x, y) = ex0 cos(y0),

1
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lim
(x,y)→(x0,y0)

v(x, y) = ex0 sin(y0),

so part (1) implies

lim
z→z0

f(z) = ex0 cos(y0) + iex0 sin(y0) = f(z0).

Exercise 3: Suppose limz→z0 f(z) 6= w0. This means there exists ε > 0 such that,
for any δ > 0, there is a point z with 0 < |z − z0| < δ such that |f(z) − w0| ≥ ε.
In particular, we can choose δ = 1/j for any j ∈ N, obtaining points zj with
0 < |z0 − zj | < 1/j but |f(zj) − w0| ≥ ε. In particular, the sequence (zj) satisfies
limj→∞ zj = z0, but limj→∞ f(zj) 6= w0.

Note: One way of finding the negation of the statement limz→z0 f(z0) = w is to
first write this statement in terms of logical quantifiers:

∀ε > 0 : ∃δ > 0 : ∀z with 0 < |z − z0| < δ : |f(z)− f(z0)| < ε.

Recall that ∀ means for every, ∃ means there exists, and ¬ means the negation
of a logical statement. These logical operators satisfy the relations ¬∀ = ∃¬ and
¬∃ = ∀¬. Thus, if P is the logical statement limz→z0 f(z0) = w, then the negation
¬P is given by the following logically equivalent statements:

¬ (∀ε > 0 : ∃δ > 0 : ∀z with 0 < |z − z0| < δ : |f(z)− f(z0)| < ε) ,

∃ε > 0 : ¬ (∃δ > 0 : ∀z with 0 < |z − z0| < δ : |f(z)− f(z0)| < ε) ,

∃ε > 0 : ∀δ > 0 : ¬ (∀z with 0 < |z − z0| < δ : |f(z)− f(z0)| < ε) ,

∃ε > 0 : ∀δ > 0 : ∃z with 0 < |z − z0| < δ : |f(z)− f(z0)| ≥ ε.
You do not need to use all this formalism to get the right answer, but this method
provides an algorithmic way of finding the negation of any logical statement, no
matter how complicated.

Exercise 4: Note: there is a typo in the statement of this problem. In definition
5, "whenever n ≥ N" should be replaced by "whenever |z − z0| < δ". However,
this definition is written correctly (on page 62) in the textbook, which you read as
part of exercise 1.

(1) For any M > 0, there exists r > 0 such for any z ∈ C satisfying |z| ≥ r, we
have |f(z)| ≥M .

(2) Fix M > 0, and take r :=
√
M . Then, for any z satisfying |z| ≥ r, we have

|z2| = |z|2 ≥ r2 ≥M.

(3) Let M := 2, and let r > 0 be arbitrary. Then we z = ir satisfies |z| ≥ r, yet
|f(z)| = |eir| = 1 < 2.
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(4) Fix ε > 0. Then we can find r > 0 such that |f(z)| ≥ 2ε−1 for all z with |z| ≥ r.
Thus, for any w ∈ C with 0 < |w| < r−1, we have |1/w| ≥ r, so |f(1/w)| ≥ 2ε−1,
hence ∣∣∣∣ 1

f(1/w)

∣∣∣∣ ≤ ε

2
.

(5) Yes. Suppose limw→0
1

f(1/w) = 0, and fix M > 0. Then we can find δ > 0 such
that for any w with 0 < |w| < δ, we have∣∣∣∣ 1

f(1/w)

∣∣∣∣ ≤M−1,
or equivalently |f(1/w)| ≥ M . If we set r := δ−1, then for any z with |z| ≥ r, we
have 0 < |1/z| < δ, hence |f(z)| = |f(1/(1/z))| ≥M .

Exercise 5:
(a) Suppose by way of contradiction that there exists z0 ∈ C such that L :=
(Re)′(z0)) exists. Then there exists δ > 0 such that for any h ∈ C with |h| < δ, we
have ∣∣∣∣Re(z0 + h)− Re(z0)

h
− L

∣∣∣∣ < 1

4
.

In particular, for any t ∈ R satisfying |t| < δ, we have

1

4
>

∣∣∣∣Re(z0 + t)− Re(z0)
t

− L
∣∣∣∣ = |1− L|,

so that
|L| ≥ 1− |L− 1| ≥ 3

4
.

On the other hand,

1

4
>

∣∣∣∣Re(z0 + it)− Re(z0)
it

− L
∣∣∣∣ = |L|,

so that 3
4 < |L| <

1
4 , which is impossible.

(b) We argue by contradiction as above, choosing δ > 0 such that for any h ∈ C
with |h| < δ, we have ∣∣∣∣ Im(z0 + h)− Im(z0)

h
− L

∣∣∣∣ < 1

4
.

For any t ∈ R with |t| < δ, we have

1

4
>

∣∣∣∣ Im(z0 + t)− Im(z0)

t
− L

∣∣∣∣ = |L|,
and

1

4
>

∣∣∣∣ Im(z0 + t)− Im(z0)

t
− f ′(z0)

∣∣∣∣ = |1− L|,
so we establish a contradiction as in part (a).
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(c) Suppose by way of contradiction that L := | · |′(z0) exists for some z0 ∈ C. If
z0 = 0, then (letting t denote a real number)

−1 = lim
t→0−

|t| − |0|
t

= L = lim
t→0+

|t| − |0|
t

= 1,

which is impossible. We may thus assume z0 6= 0. Then

L = lim
t→0

|z0 + tz0| − |z0|
tz0

=
|z0|
z0

lim
t→0

1 + t

t
=
|z0|
z0
6= 0.

On the other hand,

L = lim
t→0

|z0 + itz0| − |z0|
itz0

=
|z0|
iz0

lim
t→0

√
1 + t2 − 1

t
= 0,

a contradiction.

Exercise 6 Fix ε > 0. Because f ′(z0) 6= 0 exists, we can find δ > 0 such that∣∣∣∣f(z)− f(z0)z − z0
− f ′(z0)

∣∣∣∣ < min(ε,
1

2
|f ′(z0)|)

whenever 0 < |z − z0| < δ. Then the triangle inequality implies∣∣∣∣ |f(z)− f(z0)||z − z0|
− |f ′(z0)|

∣∣∣∣ = ∣∣∣∣f(z)− f(z0)z − z0
− f ′(z0)

∣∣∣∣ ,
so because ε > 0 was arbitrary, the first claim is true. Next, note that whenever
0 < |z − z0| < δ, we have

Re
(
f ′(z0)

f(z)− f(z0)
z − z0

)
= |f ′(z0)|2 + Re

(
f ′(z0)

(
f(z)− f(z0)

z − z0
− f ′(z0)

))
≥ |f(z0)|2 − |f ′(z0)|

∣∣∣∣f(z)− f(z0)z − z0
− f ′(z0)

∣∣∣∣
≥ 1

2
|f ′(z0)| > 0.

In particular, the difference quotients when 0 < |z − z0| < δ all lie in a single
half-plane, so we can choose a branch of arg which is defined for all such z. Next,
we observe that

cis (arg (f(z)− f(z0))− arg(z − z0)) = cis
(
arg
(
f(z)− f(z0)

z − z0

))
=

∣∣∣∣f(z)− f(z0)z − z0

∣∣∣∣−1 f(z)− f(z0)z − z0
.

Taking the limit as z → z0, and using the first part of this exercise gives

lim
z→z0

cis (arg (f(z)− f(z0))− arg(z − z0)) = cis (arg(f ′(z0))) .

Observe that the inverse of the exponential map is continuous on any branch where
it is defined, so the second claim follows.


