MATH 4220 HOMEWORK 3 SOLUTIONS

Exercise 1: Because f(z) = f(iy) =0 for all z,y € R, we have

af af
—(0,0) = ==(0,0) =0,
50,0 = 5(0.0)
so the Cauchy-Riemann equations hold at z = 0. However, the difference quotient
along the line x = y limits to
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but we noted that the directional derivative along the real axis is zero, so f is not
differentiable at z = 0.

Exercise 2:
Method 1: (Chain Rule) Using 2 = r cos(f), y = rsin(f), we compute
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where the last equality follows from the usual Cauchy-Riemann equations. Thus

% = %%. The other equation is proved similarly.

Method 2: (Difference quotients) Assume f is C' and satisfies the Cauchy-
Riemann equations. Then f is analytic, so we should have (writing zy = roe?°)

f'(20) = lim f(rewo) — f(roewo) = ¢ % lim f(r,60) = f(r0,60)
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but also
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Note that the last equality follows from the formula for the derivative of the complex
exponential function. We write f(r,0) for f viewed as a function of the two real

variables r, 8. By equating these two expressions for f'(zg), we arrive at the desired
formulas.
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Exercise 3: Note that any line can be mapped onto the real axis by a transfor-
mation of the form a(z) := az + b, where a,b € C, and a # 0. By the chain rule,

g := aof is also analytic, with ¢’(z) = af’(z). Writing g = u+iv, we have v(z) =0

for all z € D, so the Cauchy-Riemann equations give %Z = %Z =0on D. Since D

is connected, we conclude that g is constant, hence so is f =a'g.

Exercise 4:
(1) Writing f = u + iv, a direct computation (using Au = Av = 0) gives

1/ 82 .
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We now apply the Cauchy-Riemann equations and cancel terms:
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(2) Define u(x,y) := @ log |z|, which is smooth and harmonic except at z = 0.
This clearly satisfies u =0 on S; and ©w =1 on Ss.

Exercise 5: (1) Linear functions are harmonic, so u(z,y) := 2 + 8z solves the
boundary value problem.
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(2) The Cauchy-Riemann equations imply v must satisfy
ov Ju ov  Ou

dy ox dx oy
The latter condition and the fundamental theorem of calculus give v(z,y) = vo(x)
for some function wvg, and the former condition tells us v{(y) = 8, hence vy(y) =
8y + a for some a € R. Then f(z) = 2+ ia + 8z + 8iy = (2 + ¢a) + 8z is analytic
for any a € C, with Re(f) = w.

Exercise 6: This does not violate the maximum principle because the function is
only harmonic away from the heat source.



