
MATH 4220 HOMEWORK 3 SOLUTIONS

Exercise 1: Because f(x) = f(iy) = 0 for all x, y ∈ R, we have

∂f

∂x
(0, 0) =

∂f

∂y
(0, 0) = 0,

so the Cauchy-Riemann equations hold at z = 0. However, the difference quotient
along the line x = y limits to

lim
t→0

f(t+ it)− f(0, 0)

t+ it
= lim
t→0

1

t+ it

t3 + it3

2t2
=

1

2
,

but we noted that the directional derivative along the real axis is zero, so f is not
differentiable at z = 0.

Exercise 2:
Method 1: (Chain Rule) Using x = r cos(θ), y = r sin(θ), we compute

∂u

∂r
=
∂x

∂r

∂u

∂x
+
∂y

∂r

∂u

∂y
= cos(θ)

∂u

∂x
+ sin(θ)

∂u

∂y
,

∂v

∂θ
=
∂x

∂θ

∂v

∂x
+
∂y

∂θ

∂v

∂y
= −r sin(θ)

∂v

∂x
+ r cos(θ)

∂v

∂y

= r sin(θ)
∂u

∂y
+ r cos(θ)

∂u

∂x
,

where the last equality follows from the usual Cauchy-Riemann equations. Thus
∂u
∂r = 1

r
∂v
∂θ . The other equation is proved similarly.

Method 2: (Difference quotients) Assume f is C1 and satisfies the Cauchy-
Riemann equations. Then f is analytic, so we should have (writing z0 = r0e

iθ0)

f ′(z0) = lim
r→r0

f(reiθ0)− f(r0e
iθ0)

(r − r0)eiθ0
= e−iθ0 lim

r→r0

f(r, θ0)− f(r0, θ0)

r − r0

= e−iθ0
(
∂u

∂r
(z0) + i

∂v

∂r
(z0)

)
,

but also

f ′(z0) = lim
θ→θ0

f(r0e
iθ)− f(r0e

iθ0)

r0(eiθ − eiθ0)
=

1

r0
lim
θ→θ0

f(r0, θ)− f(r0, θ0)

θ − θ0
θ − θ0

eiθ − eiθ0

=
1

r0

(
∂u

∂θ
(z0) + i

∂v

∂θ
(z0)

)
1

ieiθ0

Note that the last equality follows from the formula for the derivative of the complex
exponential function. We write f(r, θ) for f viewed as a function of the two real
variables r, θ. By equating these two expressions for f ′(z0), we arrive at the desired
formulas.
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Exercise 3: Note that any line can be mapped onto the real axis by a transfor-
mation of the form α(z) := az + b, where a, b ∈ C, and a 6= 0. By the chain rule,
g := α◦f is also analytic, with g′(z) = af ′(z). Writing g = u+iv, we have v(z) = 0
for all z ∈ D, so the Cauchy-Riemann equations give ∂u

∂x = ∂u
∂y = 0 on D. Since D

is connected, we conclude that g is constant, hence so is f = a−1g.

Exercise 4:
(1) Writing f = u+ iv, a direct computation (using ∆u = ∆v = 0) gives

2∆ log |f(z)| =1

2

(
∂2

∂x2
+

∂2

∂y2

)
log(u2 + v2)

=
∂

∂x

(
1

u2 + v2

(
u
∂u

∂x
+ v

∂v

∂x

))
+

∂

∂y

(
1

u2 + v2

(
u
∂u

∂y
+ v

∂v

∂y

))
=− 2

(u2 + v2)2

(
u
∂u

∂x
+ v

∂v

∂x

)2

− 2

(u2 + v2)2

(
u
∂u

∂y
+ v

∂v

∂y

)2

+
1

u2 + v2

(
u∆u+ v∆v +

(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2
)

=− 2

(u2 + v2)2

(
u2
(
∂u

∂x

)2

+ v2
(
∂v

∂x

)2

+ 2uv
∂u

∂x

∂v

∂x

+2uv
∂u

∂x

∂v

∂y
+ u2

(
∂u

∂y

)2

+ v2
(
∂v

∂y

)2
)

+
1

u2 + v2

((
∂u

∂y

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2
)
.

We now apply the Cauchy-Riemann equations and cancel terms:

2∆ log |f(z)| =− 1

(u2 + v2)2

(
u2
(
∂u

∂x

)2

+ v2
(
∂u

∂y

)2

+ u2
(
∂u

∂y

)2

+ v2
(
∂u

∂x

)2
)

+
2

u2 + v2

((
∂u

∂x

)2

+

(
∂u

∂y

)2
)
.

=0.

(2) Define u(x, y) := 1
log(2) log |z|, which is smooth and harmonic except at z = 0.

This clearly satisfies u = 0 on S1 and u = 1 on S2.

Exercise 5: (1) Linear functions are harmonic, so u(x, y) := 2 + 8x solves the
boundary value problem.
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(2) The Cauchy-Riemann equations imply v must satisfy
∂v

∂y
=
∂u

∂x
= 8,

∂v

∂x
=
∂u

∂y
= 0.

The latter condition and the fundamental theorem of calculus give v(x, y) = v0(x)
for some function v0, and the former condition tells us v′0(y) = 8, hence v0(y) =
8y + a for some a ∈ R. Then f(z) = 2 + ia + 8x + 8iy = (2 + ia) + 8z is analytic
for any a ∈ C, with Re(f) = u.

Exercise 6: This does not violate the maximum principle because the function is
only harmonic away from the heat source.


