MATH 4220 HOMEWORK 3 SOLUTIONS

Exercise 1: Because f(x) = f(iy) = 0 for all $x, y \in \mathbb{R}$, we have

$$\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0,$$

so the Cauchy-Riemann equations hold at z = 0. However, the difference quotient along the line x = y limits to

$$\lim_{t \to 0} \frac{f(t+it) - f(0,0)}{t+it} = \lim_{t \to 0} \frac{1}{t+it} \frac{t^3 + it^3}{2t^2} = \frac{1}{2}$$

but we noted that the directional derivative along the real axis is zero, so f is not differentiable at z = 0.

Exercise 2:

Method 1: (Chain Rule) Using $x = r \cos(\theta)$, $y = r \sin(\theta)$, we compute

$$\frac{\partial u}{\partial r} = \frac{\partial x}{\partial r}\frac{\partial u}{\partial x} + \frac{\partial y}{\partial r}\frac{\partial u}{\partial y} = \cos(\theta)\frac{\partial u}{\partial x} + \sin(\theta)\frac{\partial u}{\partial y},$$
$$\frac{\partial v}{\partial \theta} = \frac{\partial x}{\partial \theta}\frac{\partial v}{\partial x} + \frac{\partial y}{\partial \theta}\frac{\partial v}{\partial y} = -r\sin(\theta)\frac{\partial v}{\partial x} + r\cos(\theta)\frac{\partial v}{\partial y}$$
$$= r\sin(\theta)\frac{\partial u}{\partial y} + r\cos(\theta)\frac{\partial u}{\partial x},$$

where the last equality follows from the usual Cauchy-Riemann equations. Thus $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$. The other equation is proved similarly.

Method 2: (Difference quotients) Assume f is C^1 and satisfies the Cauchy-Riemann equations. Then f is analytic, so we should have (writing $z_0 = r_0 e^{i\theta_0}$)

$$f'(z_0) = \lim_{r \to r_0} \frac{f(re^{i\theta_0}) - f(r_0e^{i\theta_0})}{(r - r_0)e^{i\theta_0}} = e^{-i\theta_0} \lim_{r \to r_0} \frac{f(r, \theta_0) - f(r_0, \theta_0)}{r - r_0}$$
$$= e^{-i\theta_0} \left(\frac{\partial u}{\partial r}(z_0) + i\frac{\partial v}{\partial r}(z_0)\right),$$

but also

$$f'(z_0) = \lim_{\theta \to \theta_0} \frac{f(r_0 e^{i\theta}) - f(r_0 e^{i\theta_0})}{r_0(e^{i\theta} - e^{i\theta_0})} = \frac{1}{r_0} \lim_{\theta \to \theta_0} \frac{f(r_0, \theta) - f(r_0, \theta_0)}{\theta - \theta_0} \frac{\theta - \theta_0}{e^{i\theta} - e^{i\theta_0}}$$
$$= \frac{1}{r_0} \left(\frac{\partial u}{\partial \theta}(z_0) + i\frac{\partial v}{\partial \theta}(z_0)\right) \frac{1}{ie^{i\theta_0}}$$

Note that the last equality follows from the formula for the derivative of the complex exponential function. We write $f(r, \theta)$ for f viewed as a function of the two real variables r, θ . By equating these two expressions for $f'(z_0)$, we arrive at the desired formulas.

Exercise 3: Note that any line can be mapped onto the real axis by a transformation of the form $\alpha(z) := az + b$, where $a, b \in \mathbb{C}$, and $a \neq 0$. By the chain rule, $g := \alpha \circ f$ is also analytic, with g'(z) = af'(z). Writing g = u + iv, we have v(z) = 0 for all $z \in D$, so the Cauchy-Riemann equations give $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = 0$ on D. Since D is connected, we conclude that g is constant, hence so is $f = a^{-1}g$.

Exercise 4:

(1) Writing f = u + iv, a direct computation (using $\Delta u = \Delta v = 0$) gives

$$\begin{split} 2\Delta \log |f(z)| &= \frac{1}{2} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \log(u^2 + v^2) \\ &= \frac{\partial}{\partial x} \left(\frac{1}{u^2 + v^2} \left(u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial x} \right) \right) + \frac{\partial}{\partial y} \left(\frac{1}{u^2 + v^2} \left(u \frac{\partial u}{\partial y} + v \frac{\partial v}{\partial y} \right) \right) \\ &= -\frac{2}{(u^2 + v^2)^2} \left(u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial x} \right)^2 - \frac{2}{(u^2 + v^2)^2} \left(u \frac{\partial u}{\partial y} + v \frac{\partial v}{\partial y} \right)^2 \\ &+ \frac{1}{u^2 + v^2} \left(u \Delta u + v \Delta v + \left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial v}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 \right) \\ &= -\frac{2}{(u^2 + v^2)^2} \left(u^2 \left(\frac{\partial u}{\partial x} \right)^2 + v^2 \left(\frac{\partial v}{\partial x} \right)^2 + 2uv \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} \\ &+ 2uv \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} + u^2 \left(\frac{\partial u}{\partial y} \right)^2 + v^2 \left(\frac{\partial v}{\partial y} \right)^2 \right) \\ &+ \frac{1}{u^2 + v^2} \left(\left(\frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial v}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 \right). \end{split}$$

We now apply the Cauchy-Riemann equations and cancel terms:

$$\begin{aligned} 2\Delta \log |f(z)| &= -\frac{1}{(u^2 + v^2)^2} \left(u^2 \left(\frac{\partial u}{\partial x}\right)^2 + v^2 \left(\frac{\partial u}{\partial y}\right)^2 + u^2 \left(\frac{\partial u}{\partial y}\right)^2 + v^2 \left(\frac{\partial u}{\partial x}\right)^2 \right) \\ &+ \frac{2}{u^2 + v^2} \left(\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 \right). \end{aligned}$$
$$= 0.$$

(2) Define $u(x, y) := \frac{1}{\log(2)} \log |z|$, which is smooth and harmonic except at z = 0. This clearly satisfies u = 0 on S_1 and u = 1 on S_2 .

Exercise 5: (1) Linear functions are harmonic, so u(x,y) := 2 + 8x solves the boundary value problem.

(2) The Cauchy-Riemann equations imply v must satisfy

$$\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} = 8, \qquad \quad \frac{\partial v}{\partial x} = \frac{\partial u}{\partial y} = 0.$$

The latter condition and the fundamental theorem of calculus give $v(x, y) = v_0(x)$ for some function v_0 , and the former condition tells us $v'_0(y) = 8$, hence $v_0(y) = 8y + a$ for some $a \in \mathbb{R}$. Then f(z) = 2 + ia + 8x + 8iy = (2 + ia) + 8z is analytic for any $a \in \mathbb{C}$, with $\operatorname{Re}(f) = u$.

Exercise 6: This does not violate the maximum principle because the function is only harmonic away from the heat source.