MATH 4220 HOMEWORK 3 SOLUTIONS

Exercise 1: Because $f(x)=f(i y)=0$ for all $x, y \in \mathbb{R}$, we have

$$
\frac{\partial f}{\partial x}(0,0)=\frac{\partial f}{\partial y}(0,0)=0
$$

so the Cauchy-Riemann equations hold at $z=0$. However, the difference quotient along the line $x=y$ limits to

$$
\lim _{t \rightarrow 0} \frac{f(t+i t)-f(0,0)}{t+i t}=\lim _{t \rightarrow 0} \frac{1}{t+i t} \frac{t^{3}+i t^{3}}{2 t^{2}}=\frac{1}{2}
$$

but we noted that the directional derivative along the real axis is zero, so f is not differentiable at $z=0$.

Exercise 2:

Method 1: (Chain Rule) Using $x=r \cos (\theta), y=r \sin (\theta)$, we compute

$$
\begin{aligned}
\frac{\partial u}{\partial r} & =\frac{\partial x}{\partial r} \frac{\partial u}{\partial x}+\frac{\partial y}{\partial r} \frac{\partial u}{\partial y}=\cos (\theta) \frac{\partial u}{\partial x}+\sin (\theta) \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial \theta} & =\frac{\partial x}{\partial \theta} \frac{\partial v}{\partial x}+\frac{\partial y}{\partial \theta} \frac{\partial v}{\partial y}=-r \sin (\theta) \frac{\partial v}{\partial x}+r \cos (\theta) \frac{\partial v}{\partial y} \\
& =r \sin (\theta) \frac{\partial u}{\partial y}+r \cos (\theta) \frac{\partial u}{\partial x}
\end{aligned}
$$

where the last equality follows from the usual Cauchy-Riemann equations. Thus $\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta}$. The other equation is proved similarly.

Method 2: (Difference quotients) Assume f is C^{1} and satisfies the CauchyRiemann equations. Then f is analytic, so we should have (writing $z_{0}=r_{0} e^{i \theta_{0}}$)

$$
\begin{aligned}
f^{\prime}\left(z_{0}\right) & =\lim _{r \rightarrow r_{0}} \frac{f\left(r e^{i \theta_{0}}\right)-f\left(r_{0} e^{i \theta_{0}}\right)}{\left(r-r_{0}\right) e^{i \theta_{0}}}=e^{-i \theta_{0}} \lim _{r \rightarrow r_{0}} \frac{f\left(r, \theta_{0}\right)-f\left(r_{0}, \theta_{0}\right)}{r-r_{0}} \\
& =e^{-i \theta_{0}}\left(\frac{\partial u}{\partial r}\left(z_{0}\right)+i \frac{\partial v}{\partial r}\left(z_{0}\right)\right)
\end{aligned}
$$

but also

$$
\begin{aligned}
f^{\prime}\left(z_{0}\right) & =\lim _{\theta \rightarrow \theta_{0}} \frac{f\left(r_{0} e^{i \theta}\right)-f\left(r_{0} e^{i \theta_{0}}\right)}{r_{0}\left(e^{i \theta}-e^{i \theta_{0}}\right)}=\frac{1}{r_{0}} \lim _{\theta \rightarrow \theta_{0}} \frac{f\left(r_{0}, \theta\right)-f\left(r_{0}, \theta_{0}\right)}{\theta-\theta_{0}} \frac{\theta-\theta_{0}}{e^{i \theta}-e^{i \theta_{0}}} \\
& =\frac{1}{r_{0}}\left(\frac{\partial u}{\partial \theta}\left(z_{0}\right)+i \frac{\partial v}{\partial \theta}\left(z_{0}\right)\right) \frac{1}{i e^{i \theta_{0}}}
\end{aligned}
$$

Note that the last equality follows from the formula for the derivative of the complex exponential function. We write $f(r, \theta)$ for f viewed as a function of the two real variables r, θ. By equating these two expressions for $f^{\prime}\left(z_{0}\right)$, we arrive at the desired formulas.

Exercise 3: Note that any line can be mapped onto the real axis by a transformation of the form $\alpha(z):=a z+b$, where $a, b \in \mathbb{C}$, and $a \neq 0$. By the chain rule, $g:=\alpha \circ f$ is also analytic, with $g^{\prime}(z)=a f^{\prime}(z)$. Writing $g=u+i v$, we have $v(z)=0$ for all $z \in D$, so the Cauchy-Riemann equations give $\frac{\partial u}{\partial x}=\frac{\partial u}{\partial y}=0$ on D. Since D is connected, we conclude that g is constant, hence so is $f=a^{-1} g$.

Exercise 4:

(1) Writing $f=u+i v$, a direct computation (using $\Delta u=\Delta v=0$) gives

$$
\begin{aligned}
2 \Delta \log |f(z)|= & \frac{1}{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \log \left(u^{2}+v^{2}\right) \\
= & \frac{\partial}{\partial x}\left(\frac{1}{u^{2}+v^{2}}\left(u \frac{\partial u}{\partial x}+v \frac{\partial v}{\partial x}\right)\right)+\frac{\partial}{\partial y}\left(\frac{1}{u^{2}+v^{2}}\left(u \frac{\partial u}{\partial y}+v \frac{\partial v}{\partial y}\right)\right) \\
= & -\frac{2}{\left(u^{2}+v^{2}\right)^{2}}\left(u \frac{\partial u}{\partial x}+v \frac{\partial v}{\partial x}\right)^{2}-\frac{2}{\left(u^{2}+v^{2}\right)^{2}}\left(u \frac{\partial u}{\partial y}+v \frac{\partial v}{\partial y}\right)^{2} \\
& +\frac{1}{u^{2}+v^{2}}\left(u \Delta u+v \Delta v+\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}\right) \\
= & -\frac{2}{\left(u^{2}+v^{2}\right)^{2}}\left(u^{2}\left(\frac{\partial u}{\partial x}\right)^{2}+v^{2}\left(\frac{\partial v}{\partial x}\right)^{2}+2 u v \frac{\partial u}{\partial x} \frac{\partial v}{\partial x}\right. \\
& \left.+2 u v \frac{\partial u}{\partial x} \frac{\partial v}{\partial y}+u^{2}\left(\frac{\partial u}{\partial y}\right)^{2}+v^{2}\left(\frac{\partial v}{\partial y}\right)^{2}\right) \\
& +\frac{1}{u^{2}+v^{2}}\left(\left(\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial y}\right)^{2}\right) .
\end{aligned}
$$

We now apply the Cauchy-Riemann equations and cancel terms:

$$
\begin{aligned}
2 \Delta \log |f(z)|= & -\frac{1}{\left(u^{2}+v^{2}\right)^{2}}\left(u^{2}\left(\frac{\partial u}{\partial x}\right)^{2}+v^{2}\left(\frac{\partial u}{\partial y}\right)^{2}+u^{2}\left(\frac{\partial u}{\partial y}\right)^{2}+v^{2}\left(\frac{\partial u}{\partial x}\right)^{2}\right) \\
& +\frac{2}{u^{2}+v^{2}}\left(\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}\right) \\
= & 0
\end{aligned}
$$

(2) Define $u(x, y):=\frac{1}{\log (2)} \log |z|$, which is smooth and harmonic except at $z=0$. This clearly satisfies $u=0$ on S_{1} and $u=1$ on S_{2}.

Exercise 5: (1) Linear functions are harmonic, so $u(x, y):=2+8 x$ solves the boundary value problem.
(2) The Cauchy-Riemann equations imply v must satisfy

$$
\frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}=8, \quad \frac{\partial v}{\partial x}=\frac{\partial u}{\partial y}=0
$$

The latter condition and the fundamental theorem of calculus give $v(x, y)=v_{0}(x)$ for some function v_{0}, and the former condition tells us $v_{0}^{\prime}(y)=8$, hence $v_{0}(y)=$ $8 y+a$ for some $a \in \mathbb{R}$. Then $f(z)=2+i a+8 x+8 i y=(2+i a)+8 z$ is analytic for any $a \in \mathbb{C}$, with $\operatorname{Re}(f)=u$.

Exercise 6: This does not violate the maximum principle because the function is only harmonic away from the heat source.

