
MATH 4220 HOMEWORK 4 SOLUTIONS

Exercise 1: By the fundamental theorem of algebra, we can write

p(z) = λ(z − b1) · · · (z − bn).

By expanding and identifying coefficents of z0, we arrive at λ = 1, and thus a0 =
(−1)nb1 · · · bn. If |bi| ≤ 1 for all i, then

1 < |a0| = |b1 · · · bn| ≤ 1,

a contradiction.

Exercise 2: Write Rm,n(z) = f(z)
g(z) , where

f(z) = amz
m + · · ·+ a0, g(z) = bnz

n + · · ·+ b0.

Then the triangle inequality gives

|f(z)| ≤ |am|·|z|m+|am−1|·|z|m−1 · · ·+|a0| = |z|m
(
|am|+ |am−1| · |z|−1 + · · · |a0| · |z|−m

)
|g(z)| ≥ |bn|·|z|n−|bn−1|·|z|n−1−· · ·−|b0| = |z|n

(
|bn| − |bn−1| · |z|−1 − · · · − |b0| · |z|−n

)
for all z ∈ C \ {0}. If we choose

Λ ≥ 1

2(m+ n)
max{|a0|, ..., |am−1|, |b0|, ..., |bn−1|} ·max{|am|−1, |bn|−1},

then g(z) 6= 0, and
|f(z)|
|g(z)|

≤ |z|m−n 2|am|
1
2 |bn|

whenever |z| ≥ Λ. Similarly, when |z| ≥ Λ, we have

|f(z)|
|g(z)|

≥ |z|m−n
1
2 |am|
2|bn|

.

Note: You did not need to be so explicit in choosing Λ – it would suffice to note
that the terms in the parentheses approach |am| and |bn|, respectively (and that
would also let you show that the constants c1, c2 can be taken arbitrarily close to
|am|
|bn| , though that was not asked for in the problem).

An alternative solution (with a less explicit choice of constants): By the funda-
mental theorem of algebra, let us write

Rm,n(z) =
am(z − z1)(z − z2) · · · (z − zm)

bn(z − w1)(z − w2) · · · (z − wn)

where am and bn are non-zero. To estimate the modulus of this quantity, let’s begin
to estimate the quantity |z − w| for a fixed w ∈ R. Observe that, if |z| ≥ 2|w|, we
have |w| ≤ |z|/2 and −|w| ≥ −|z|/2. Using the triangle inequality, we find that

|z − w| ≤ |z|+ | − w| = |z|+ |w| ≤ |z|+ |z|/2 =
3

2
|z|

1
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whenever |z| ≥ 2|w|. By the reverse triangle inequality, we have

|z − w| ≥ ||z| − |w|| ≥ |z| − |w| ≥ |z| − |z|/2 =
1

2
|z|

whenever |z| ≥ 2|w|. Putting these together, we see that

(0.1)
1

2
|z| ≤ |z − w| ≤ 3

2
|z|

and

(0.2)
2

3|z|
≤ 1

|z − w|
≤ 2

|z|
whenever |z| ≥ 2|w| and |z| > 0. In view of these estimates, set

M = 1 + max{2|z1|, 2|z2|, . . . , 2|zm|, 2|w1|, 2|w2|, . . . , 2|wn|}
(I added the 1 because I want to make sure |z| > 0 when |z| > M). Observe that

|Rn,m(z)| =

∣∣∣∣ am(z − z1)(z − z2) · · · (z − zm)

bn(z − w1)(z − w2) · · · (z − wn)

∣∣∣∣
=

∣∣∣∣ambn
∣∣∣∣ |z − z1||z − z2| · · · |z − zm| 1

|z − w1|
1

|z − w2|
· · · 1

|z − wn|
Upon putting together the estimates (0.1) and (0.2) applied to each term |z − zk|
and 1/|z − wk|, we obtain∣∣∣∣ambn

∣∣∣∣ 2n−m3−n|z|m−n =

∣∣∣∣ambn
∣∣∣∣ ( |z|2

)m(
2

3|z|

)n
≤ |Rn,m(z)|

and

|Rn,m(z)| ≤
∣∣∣∣ambn

∣∣∣∣ (3|z|
2

)m(
2

|z|

)n
=

∣∣∣∣ambn
∣∣∣∣ 2n−m3m|z|m−n

whenever |z| ≥M . In other words,

c1|z|m−n ≤ |Rn,m(z)| ≤ c2|z|m−n

whenever |z| ≥M where

0 < c1 :=

∣∣∣∣ambn
∣∣∣∣ 2n−m3−n <

∣∣∣∣ambn
∣∣∣∣ 2n−m3m := c2.

Exercise 3: Using the hint,

lim
z→0

sin(z)

z
= lim
z→0

sin(z)− sin(0)

z
=

d

dz

∣∣∣∣
z=0

sin(z) = cos(0) = 1,

lim
z→0

cos(z)− 1

z
= lim
z→0

cos(z)− cos(0)

z
=

d

dz

∣∣∣∣
z=0

cos(z) = − sin(0) = 0.

Exercise 4: Using the hint, we proceed by induction on m, with the case m = 1
immediate since eλ1z is not the zero function.. Suppose the claim holds for some
m ≥ 1, and assume λ1, ..., λm+1 ∈ C are distinct complex numbers such that

0 = c1e
λ1z + · · ·+ cm+1e

λm+1z

for all z ∈ C. Dividing both sides by eλm+1z and rearranging gives

−cm+1 = c1e
(λ1−λm+1)z + · · ·+ cme

(λm−λm+1)z
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for all z ∈ C. Next, we differentiate to obtain

0 = (λ1 − λm+1)c1e
(λ1−λm+1)z + · · ·+ (λm − λm+1)cme

(λm−λm+1)z

for all z ∈ C. Because the λi − λm+1 are still pairwise distinct, may apply the
induction hypothesis to conclude

0 = (λ1 − λm+1)c1 = · · · = (λm − λm+1)cm.

Since λi 6= λm+1 for 1 ≤ i ≤ m gives c1 = · · · = cm = 0. Then our above hypothe-
sis is just cm+1e

λm+1z = 0 for all z ∈ C, but again using eλm+1z 6= 0, we conclude
cm+1 = 0 as well.

Exercise 5: Suppose by way of contradiction that such a function F exists, and
define G(z) := F (z)− Log(z) for all z ∈ D′, where

D′ := D \ {x ∈ R;x < 0}.

Because D′ is a domain and G′(z) = F ′(z) − 1
z = 0 for all z ∈ D′, we know that

G(z) = c for some c ∈ C. Thus F (z) = c+ Log(z) for all z ∈ D′, but because F is
analytic in D′, it is also continuous there, yet

lim
t→0+

F

(
−3

2
+ it

)
= c+ lim

t→0+
Log

(
−3

2
+ it

)
= log(3/2) + iπ,

lim
t→0−

F

(
−3

2
+ it

)
= c+ lim

t→0−
Log

(
−3

2
+ it

)
= log(3/2)− iπ,

a contradiction.

Exercise 6:
(1) Just as we approached the nth roots of unity, the same method gives us

the roots

(0.3) ωk = x1/ne2πi(k/n)

for k = 0, 1, 2, . . . , n−1 where x1/n is the positive nth root of x. To see why
there is more than one way to define a root, let’s take a brief stroll back
to the first time you learned about square roots: Recall, they said that,
for a positive number x, the square root of x was the number y having the
property that y2 = x. But, already we see an issue. For example, when
x = 4, y = 2 and y = −2 both satisfy y2 = 4 = x. For convenience, there
was then a definition made (all in the realm of the real number system):
Given a positive real number x, the square root of x is the (unique) positive
number y such that y2 = x and it is denoted by y =

√
x. The definition

could have just has easily been made the other way, i.e., declaring that the
square root of a positive number x is the unique negative number y such
that y2 = x. Generalizing this a little further, we see that, for a positive
real number x, there are n numbers ω, all given by (0.3), for which ωn = x
– all are good candidates for a definition for the nth root of x. But of
course, for uniformity, we simply choose the real (and positive one), ω0.
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(2) Yes, it is true. To see this, simply observe that, for any k = 0, 1, . . . , n− 1,

Log(ωk) = log(x1/n) + iArg(e2π(k/n)i)

Now, for k/n ≤ 1/2, Arg(e2πi(k/n)) = 2πk/n. Thus, for any k = 1, 2, . . . , n−
1 for which k/n ≤ 1/2, we have

Log(ωk) = log(x1/n) + 2π(k/n)i

and so

enLog(ωk) = en(log(x1/n)+2π(k/n)i)

= en log(x1/n)+2πki

= elog((x
1/n)n)e2πki

= elog(x) · 1
= x

where we have used the fact that k in an integer. When 1/2 < k/n ≤ 1,
things are slightly more difficult (but for no interesting reason). For these
values, the principal branch of the argument gives

Arg(e2π(k/n)i) = 2π(k/n)− 2π = 2π(k − n)/n

and therefore (using identical calculations)

enLog(ωk) = elog(x)en(2π(k−n)/n)i = xe2π(k−n)i = x · 1 = x.

(3) Yes, note that

Log(ω0) = Log(x1/n) + iArg(e0i) =
1

n
Log(x) + i · 0 =

1

n
Log(x).

So, it makes sense that that is a reasonable definition. Now, given z ∈ D,
i.e., z 6= 0, we consider

z1/n = e
1
n Log(z).

Observe that

(z1/n)n =
(
e

1
n Log(z)

)n
= e

n
n Log(z) = eLog(z) = Log(z)

where we have used the fundamental inverse property of the logarithm:
eLog(z) = z for every z ∈ D.

(4) To see that z 7→ z1/2 is not continuous at −1, it is enough to find a sequence
zn → −1 for which

lim
n→∞

z1/2n 6= (−1)1/2 = i.

Note, I have used the fact that e(1/2) Log(−1) = e(1/2)(0+iπ) = eiπ/2 = i and
so our definition of the square root makes sense. Okay, mimicking the proof
I gave in class to show that Log(z) isn’t continuous at z = −1, consider
the sequence zn = eiπ(1+1/n) defined for n = 1, 2, . . . . We note that, by the
continuity of the exponential map,

lim
n→∞

eiπ(1+1/n) = eiπ(1+0) = eiπ = −1.
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We see, however, that Arg(zn) = π(1 − 1/n) − 2π = −π(1 + 1/n) and
therefore

z1/2n = e(1/2) Log(zn) = e(1/2)(Log(|zn|+iArg(zn))

= e(1/2)(0+i(−π(1+1/n)))

= e−i(1+1/n)π/2

and therefore

lim
n→∞

z1/2n = lim
n→∞

e−i(1+1/n)π/2 = e−iπ/2 = −i 6= i = (−1)1/2,

as was asserted. Thus z 7→ z1/2, defined using the principal branch of the
logarithm, is not continuous at −1.

By virtue of Theorem 3 on Page 69 (the composition of differentiable
functions is differentiable), z 7→ z1/2 = e(1/2) Log(z) is differentiable at ev-
ery point z ∈ D∗ because Log(z) is analytic on D∗ and z 7→ ez is entire.
Consequently, z 7→ z1/2 is analytic on D∗. Since differentiable functions are
continuous, we conclude that z 7→ z1/2 must also be continuous on D∗.

We should, perhaps, think about if it is possible for z1/2 to be continuous
at any point of C \ D∗ (this the branch cut of Log(z)). By cooking up a
completely analogous argument (to that for z = −1), you will find that
z1/2 cannot be continuous (and hence not differentiable) at any strictly
negative real number. That leaves the final point z = 0. Since z 7→ z1/2 =
e(1/2) Log(z) isn’t defined at z = 0, it doesn’t make sense to ask about
continuity there and so we are done. This still seems kind of silly though
because the “real" square root function is defined and continuous at x = 0.
If you share my sentiment, you should know that this shortcoming of z 7→
z1/2 can be “fixed" by simply declaring that the function has the value of
0 at z = 0 (this is the idea of a removable discontinuity) and the function
then does become continuous at z = 0 – but we won’t worry about that.

(5) Yes, this is not all that hard, we just have to select a branch of the logarithm
that is, in fact, continuous on Re(z) < 0. So, to this end, let’s define

Log3π/4(z) = log(|z|) + arg3π/4(z)

where arg3π/4 is the branch of the argument with branch cut along the ray
{z = re−iπ/4 : r > 0} and range (−π/4, 7π/4]. It’s not difficult to work out
that

arg3π/4(z) = Arg(e−i3π/4z) +
3π

4
.

It is straightforward to verify that Log3π/4 is analytic except on its branch
cut which lies in the forth quadrant. Consequently, this is an analytic
function on Re(z) < 0 and thus continuous there. With it we define

z1/2 = e(1/2) Log3π/4(z)

for z 6= 0. For any such z, we can write z = |z|eiθ where (−π/4, 7π/4], with
this representation, we observe that Arg3π/4(z) = θ. Thus,(

z1/2
)2

= e(2/2) Log3π/4(z) = eLog(|z|)eiArg(z) = |z|eiθ = z,
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as desired.
(6) Okay.

(a) By properties of the exponential, we have

zα+β = e(α+β) Log(z) = eαLog(z)+β Log(z) = eαLog(z)eβ Log(z) = zαzβ .

for any z ∈ D∗.
(b) I hope doing this question got you to think a little bit. In fact, it is

not true that (zα)β = zαβ for all complex numbers α, β, z. To see this,
observe that

(e2πi) = e2πi(Log(e)) = e2πi(1+i0) = e2πi = 1

(as it must be). And therefore

(e2πi)2πi = 12πi = e2πiLog(1) = e2πi(0) = e0 = 1.

On the other hand,

e(2πi)(2πi) = e−4π
2

< 1

and therefore

(e2πi)2πi 6= e(2πi)(2πi).

The property does, however, hold whenever β ∈ Z (that I mean to add
that as a hypotheses).

(c) By our first Item,

zαz−α = z0 = 1

and so z−α = 1/zα, as desired.
(d) By its definition (and Theorem 3 on Page 69), z 7→ zβ is analytic on
D∗ and

d

dz
zβ =

d

dz

(
eβ Log(z)

)
) = eβ Log(z)β

d

dz
Log(z) = βzβ

d

dz
Log(z)

for z ∈ D∗. Now, as we showed in class,
d

dz
Log(z) =

1

z
= z−1

whenever z ∈ D∗. Therefore
d

dz
zβ = βzβz−1 = βzβ−1

for all z ∈ D where we have used Item 1.


