MATH 4220 HOMEWORK 4 SOLUTIONS

Exercise 1: By the fundamental theorem of algebra, we can write

$$
p(z)=\lambda\left(z-b_{1}\right) \cdots\left(z-b_{n}\right) .
$$

By expanding and identifying coefficents of z^{0}, we arrive at $\lambda=1$, and thus $a_{0}=$ $(-1)^{n} b_{1} \cdots b_{n}$. If $\left|b_{i}\right| \leq 1$ for all i, then

$$
1<\left|a_{0}\right|=\left|b_{1} \cdots b_{n}\right| \leq 1
$$

a contradiction.
Exercise 2: Write $R_{m, n}(z)=\frac{f(z)}{g(z)}$, where

$$
f(z)=a_{m} z^{m}+\cdots+a_{0}, \quad g(z)=b_{n} z^{n}+\cdots+b_{0} .
$$

Then the triangle inequality gives
$|f(z)| \leq\left|a_{m}\right| \cdot|z|^{m}+\left|a_{m-1}\right| \cdot|z|^{m-1} \cdots+\left|a_{0}\right|=|z|^{m}\left(\left|a_{m}\right|+\left|a_{m-1}\right| \cdot|z|^{-1}+\cdots \cdot\left|a_{0}\right| \cdot|z|^{-m}\right)$
$|g(z)| \geq\left|b_{n}\right| \cdot|z|^{n}-\left|b_{n-1}\right| \cdot|z|^{n-1}-\cdots-\left|b_{0}\right|=|z|^{n}\left(\left|b_{n}\right|-\left|b_{n-1}\right| \cdot|z|^{-1}-\cdots-\left|b_{0}\right| \cdot|z|^{-n}\right)$
for all $z \in \mathbb{C} \backslash\{0\}$. If we choose

$$
\Lambda \geq \frac{1}{2(m+n)} \max \left\{\left|a_{0}\right|, \ldots,\left|a_{m-1}\right|,\left|b_{0}\right|, \ldots,\left|b_{n-1}\right|\right\} \cdot \max \left\{\left|a_{m}\right|^{-1},\left|b_{n}\right|^{-1}\right\}
$$

then $g(z) \neq 0$, and

$$
\frac{|f(z)|}{|g(z)|} \leq|z|^{m-n} \frac{2\left|a_{m}\right|}{\frac{1}{2}\left|b_{n}\right|}
$$

whenever $|z| \geq \Lambda$. Similarly, when $|z| \geq \Lambda$, we have

$$
\frac{|f(z)|}{|g(z)|} \geq|z|^{m-n} \frac{\frac{1}{2}\left|a_{m}\right|}{2\left|b_{n}\right|}
$$

Note: You did not need to be so explicit in choosing Λ - it would suffice to note that the terms in the parentheses approach $\left|a_{m}\right|$ and $\left|b_{n}\right|$, respectively (and that would also let you show that the constants c_{1}, c_{2} can be taken arbitrarily close to $\frac{\left|a_{m}\right|}{\left|b_{n}\right|}$, though that was not asked for in the problem).

An alternative solution (with a less explicit choice of constants): By the fundamental theorem of algebra, let us write

$$
R_{m, n}(z)=\frac{a_{m}\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{m}\right)}{b_{n}\left(z-w_{1}\right)\left(z-w_{2}\right) \cdots\left(z-w_{n}\right)}
$$

where a_{m} and b_{n} are non-zero. To estimate the modulus of this quantity, let's begin to estimate the quantity $|z-w|$ for a fixed $w \in \mathbb{R}$. Observe that, if $|z| \geq 2|w|$, we have $|w| \leq|z| / 2$ and $-|w| \geq-|z| / 2$. Using the triangle inequality, we find that

$$
|z-w| \leq|z|+|-w|=|z|+|w| \leq|z|+|z| / 2=\frac{3}{2}|z|
$$

whenever $|z| \geq 2|w|$. By the reverse triangle inequality, we have

$$
|z-w| \geq||z|-|w|| \geq|z|-|w| \geq|z|-|z| / 2=\frac{1}{2}|z|
$$

whenever $|z| \geq 2|w|$. Putting these together, we see that

$$
\begin{equation*}
\frac{1}{2}|z| \leq|z-w| \leq \frac{3}{2}|z| \tag{0.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2}{3|z|} \leq \frac{1}{|z-w|} \leq \frac{2}{|z|} \tag{0.2}
\end{equation*}
$$

whenever $|z| \geq 2|w|$ and $|z|>0$. In view of these estimates, set

$$
M=1+\max \left\{2\left|z_{1}\right|, 2\left|z_{2}\right|, \ldots, 2\left|z_{m}\right|, 2\left|w_{1}\right|, 2\left|w_{2}\right|, \ldots, 2\left|w_{n}\right|\right\}
$$

(I added the 1 because I want to make sure $|z|>0$ when $|z|>M$). Observe that

$$
\begin{aligned}
\left|R_{n, m}(z)\right| & =\left|\frac{a_{m}\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{m}\right)}{b_{n}\left(z-w_{1}\right)\left(z-w_{2}\right) \cdots\left(z-w_{n}\right)}\right| \\
& =\left|\frac{a_{m}}{b_{n}}\right|\left|z-z_{1}\right|\left|z-z_{2}\right| \cdots\left|z-z_{m}\right| \frac{1}{\left|z-w_{1}\right|} \frac{1}{\left|z-w_{2}\right|} \cdots \frac{1}{\left|z-w_{n}\right|}
\end{aligned}
$$

Upon putting together the estimates (0.1) and (0.2) applied to each term $\left|z-z_{k}\right|$ and $1 /\left|z-w_{k}\right|$, we obtain

$$
\left|\frac{a_{m}}{b_{n}}\right| 2^{n-m} 3^{-n}|z|^{m-n}=\left|\frac{a_{m}}{b_{n}}\right|\left(\frac{|z|}{2}\right)^{m}\left(\frac{2}{3|z|}\right)^{n} \leq\left|R_{n, m}(z)\right|
$$

and

$$
\left|R_{n, m}(z)\right| \leq\left|\frac{a_{m}}{b_{n}}\right|\left(\frac{3|z|}{2}\right)^{m}\left(\frac{2}{|z|}\right)^{n}=\left|\frac{a_{m}}{b_{n}}\right| 2^{n-m} 3^{m}|z|^{m-n}
$$

whenever $|z| \geq M$. In other words,

$$
c_{1}|z|^{m-n} \leq\left|R_{n, m}(z)\right| \leq c_{2}|z|^{m-n}
$$

whenever $|z| \geq M$ where

$$
0<c_{1}:=\left|\frac{a_{m}}{b_{n}}\right| 2^{n-m} 3^{-n}<\left|\frac{a_{m}}{b_{n}}\right| 2^{n-m} 3^{m}:=c_{2}
$$

Exercise 3: Using the hint,

$$
\begin{gathered}
\lim _{z \rightarrow 0} \frac{\sin (z)}{z}=\lim _{z \rightarrow 0} \frac{\sin (z)-\sin (0)}{z}=\left.\frac{d}{d z}\right|_{z=0} \sin (z)=\cos (0)=1 \\
\lim _{z \rightarrow 0} \frac{\cos (z)-1}{z}=\lim _{z \rightarrow 0} \frac{\cos (z)-\cos (0)}{z}=\left.\frac{d}{d z}\right|_{z=0} \cos (z)=-\sin (0)=0 .
\end{gathered}
$$

Exercise 4: Using the hint, we proceed by induction on m, with the case $m=1$ immediate since $e^{\lambda_{1} z}$ is not the zero function.. Suppose the claim holds for some $m \geq 1$, and assume $\lambda_{1}, \ldots, \lambda_{m+1} \in \mathbb{C}$ are distinct complex numbers such that

$$
0=c_{1} e^{\lambda_{1} z}+\cdots+c_{m+1} e^{\lambda_{m+1} z}
$$

for all $z \in \mathbb{C}$. Dividing both sides by $e^{\lambda_{m+1} z}$ and rearranging gives

$$
-c_{m+1}=c_{1} e^{\left(\lambda_{1}-\lambda_{m+1}\right) z}+\cdots+c_{m} e^{\left(\lambda_{m}-\lambda_{m+1}\right) z}
$$

for all $z \in \mathbb{C}$. Next, we differentiate to obtain

$$
0=\left(\lambda_{1}-\lambda_{m+1}\right) c_{1} e^{\left(\lambda_{1}-\lambda_{m+1}\right) z}+\cdots+\left(\lambda_{m}-\lambda_{m+1}\right) c_{m} e^{\left(\lambda_{m}-\lambda_{m+1}\right) z}
$$

for all $z \in \mathbb{C}$. Because the $\lambda_{i}-\lambda_{m+1}$ are still pairwise distinct, may apply the induction hypothesis to conclude

$$
0=\left(\lambda_{1}-\lambda_{m+1}\right) c_{1}=\cdots=\left(\lambda_{m}-\lambda_{m+1}\right) c_{m} .
$$

Since $\lambda_{i} \neq \lambda_{m+1}$ for $1 \leq i \leq m$ gives $c_{1}=\cdots=c_{m}=0$. Then our above hypothesis is just $c_{m+1} e^{\lambda_{m+1} z}=0$ for all $z \in \mathbb{C}$, but again using $e^{\lambda_{m+1} z} \neq 0$, we conclude $c_{m+1}=0$ as well.

Exercise 5: Suppose by way of contradiction that such a function F exists, and define $G(z):=F(z)-\log (z)$ for all $z \in D^{\prime}$, where

$$
D^{\prime}:=D \backslash\{x \in \mathbb{R} ; x<0\} .
$$

Because D^{\prime} is a domain and $G^{\prime}(z)=F^{\prime}(z)-\frac{1}{z}=0$ for all $z \in D^{\prime}$, we know that $G(z)=c$ for some $c \in \mathbb{C}$. Thus $F(z)=c+\log (z)$ for all $z \in D^{\prime}$, but because F is analytic in D^{\prime}, it is also continuous there, yet

$$
\begin{aligned}
& \lim _{t \rightarrow 0+} F\left(-\frac{3}{2}+i t\right)=c+\lim _{t \rightarrow 0+} \log \left(-\frac{3}{2}+i t\right)=\log (3 / 2)+i \pi \\
& \lim _{t \rightarrow 0-} F\left(-\frac{3}{2}+i t\right)=c+\lim _{t \rightarrow 0-} \log \left(-\frac{3}{2}+i t\right)=\log (3 / 2)-i \pi
\end{aligned}
$$

a contradiction.

Exercise 6:

(1) Just as we approached the nth roots of unity, the same method gives us the roots

$$
\begin{equation*}
\omega_{k}=x^{1 / n} e^{2 \pi i(k / n)} \tag{0.3}
\end{equation*}
$$

for $k=0,1,2, \ldots, n-1$ where $x^{1 / n}$ is the positive nth root of x. To see why there is more than one way to define a root, let's take a brief stroll back to the first time you learned about square roots: Recall, they said that, for a positive number x, the square root of x was the number y having the property that $y^{2}=x$. But, already we see an issue. For example, when $x=4, y=2$ and $y=-2$ both satisfy $y^{2}=4=x$. For convenience, there was then a definition made (all in the realm of the real number system): Given a positive real number x, the square root of x is the (unique) positive number y such that $y^{2}=x$ and it is denoted by $y=\sqrt{x}$. The definition could have just has easily been made the other way, i.e., declaring that the square root of a positive number x is the unique negative number y such that $y^{2}=x$. Generalizing this a little further, we see that, for a positive real number x, there are n numbers ω, all given by (0.3), for which $\omega^{n}=x$ - all are good candidates for a definition for the nth root of x. But of course, for uniformity, we simply choose the real (and positive one), ω_{0}.
(2) Yes, it is true. To see this, simply observe that, for any $k=0,1, \ldots, n-1$,

$$
\log \left(\omega_{k}\right)=\log \left(x^{1 / n}\right)+i \operatorname{Arg}\left(e^{2 \pi(k / n) i}\right)
$$

Now, for $k / n \leq 1 / 2, \operatorname{Arg}\left(e^{2 \pi i(k / n)}\right)=2 \pi k / n$. Thus, for any $k=1,2, \ldots, n-$ 1 for which $k / n \leq 1 / 2$, we have

$$
\log \left(\omega_{k}\right)=\log \left(x^{1 / n}\right)+2 \pi(k / n) i
$$

and so

$$
\begin{aligned}
e^{n \log \left(\omega_{k}\right)} & \left.=e^{n\left(\log \left(x^{1 / n}\right)+2 \pi(k / n) i\right.}\right) \\
& =e^{n \log \left(x^{1 / n}\right)+2 \pi k i} \\
& =e^{\log \left(\left(x^{1 / n}\right)^{n}\right)} e^{2 \pi k i} \\
& =e^{\log (x)} \cdot 1 \\
& =x
\end{aligned}
$$

where we have used the fact that k in an integer. When $1 / 2<k / n \leq 1$, things are slightly more difficult (but for no interesting reason). For these values, the principal branch of the argument gives

$$
\operatorname{Arg}\left(e^{2 \pi(k / n) i}\right)=2 \pi(k / n)-2 \pi=2 \pi(k-n) / n
$$

and therefore (using identical calculations)

$$
e^{n \log \left(\omega_{k}\right)}=e^{\log (x)} e^{n(2 \pi(k-n) / n) i}=x e^{2 \pi(k-n) i}=x \cdot 1=x .
$$

(3) Yes, note that

$$
\log \left(\omega_{0}\right)=\log \left(x^{1 / n}\right)+i \operatorname{Arg}\left(e^{0 i}\right)=\frac{1}{n} \log (x)+i \cdot 0=\frac{1}{n} \log (x) .
$$

So, it makes sense that that is a reasonable definition. Now, given $z \in \mathcal{D}$, i.e., $z \neq 0$, we consider

$$
z^{1 / n}=e^{\frac{1}{n} \log (z)} .
$$

Observe that

$$
\left(z^{1 / n}\right)^{n}=\left(e^{\frac{1}{n} \log (z)}\right)^{n}=e^{\frac{n}{n} \log (z)}=e^{\log (z)}=\log (z)
$$

where we have used the fundamental inverse property of the logarithm: $e^{\log (z)}=z$ for every $z \in \mathcal{D}$.
(4) To see that $z \mapsto z^{1 / 2}$ is not continuous at -1 , it is enough to find a sequence $z_{n} \rightarrow-1$ for which

$$
\lim _{n \rightarrow \infty} z_{n}^{1 / 2} \neq(-1)^{1 / 2}=i
$$

Note, I have used the fact that $e^{(1 / 2) \log (-1)}=e^{(1 / 2)(0+i \pi)}=e^{i \pi / 2}=i$ and so our definition of the square root makes sense. Okay, mimicking the proof I gave in class to show that $\log (z)$ isn't continuous at $z=-1$, consider the sequence $z_{n}=e^{i \pi(1+1 / n)}$ defined for $n=1,2, \ldots$. We note that, by the continuity of the exponential map,

$$
\lim _{n \rightarrow \infty} e^{i \pi(1+1 / n)}=e^{i \pi(1+0)}=e^{i \pi}=-1
$$

We see, however, that $\operatorname{Arg}\left(z_{n}\right)=\pi(1-1 / n)-2 \pi=-\pi(1+1 / n)$ and therefore

$$
\begin{aligned}
z_{n}^{1 / 2}=e^{(1 / 2) \log \left(z_{n}\right)} & =e^{(1 / 2)\left(\log \left(\left|z_{n}\right|+i \operatorname{Arg}\left(z_{n}\right)\right)\right.} \\
& =e^{(1 / 2)(0+i(-\pi(1+1 / n)))} \\
& =e^{-i(1+1 / n) \pi / 2}
\end{aligned}
$$

and therefore

$$
\lim _{n \rightarrow \infty} z_{n}^{1 / 2}=\lim _{n \rightarrow \infty} e^{-i(1+1 / n) \pi / 2}=e^{-i \pi / 2}=-i \neq i=(-1)^{1 / 2}
$$

as was asserted. Thus $z \mapsto z^{1 / 2}$, defined using the principal branch of the logarithm, is not continuous at -1 .

By virtue of Theorem 3 on Page 69 (the composition of differentiable functions is differentiable), $z \mapsto z^{1 / 2}=e^{(1 / 2) \log (z)}$ is differentiable at every point $z \in \mathcal{D}^{*}$ because $\log (z)$ is analytic on \mathcal{D}^{*} and $z \mapsto e^{z}$ is entire. Consequently, $z \mapsto z^{1 / 2}$ is analytic on \mathcal{D}^{*}. Since differentiable functions are continuous, we conclude that $z \mapsto z^{1 / 2}$ must also be continuous on \mathcal{D}^{*}.

We should, perhaps, think about if it is possible for $z^{1 / 2}$ to be continuous at any point of $\mathbb{C} \backslash \mathcal{D}^{*}$ (this the branch cut of $\log (z)$). By cooking up a completely analogous argument (to that for $z=-1$), you will find that $z^{1 / 2}$ cannot be continuous (and hence not differentiable) at any strictly negative real number. That leaves the final point $z=0$. Since $z \mapsto z^{1 / 2}=$ $e^{(1 / 2) \log (z)}$ isn't defined at $z=0$, it doesn't make sense to ask about continuity there and so we are done. This still seems kind of silly though because the "real" square root function is defined and continuous at $x=0$. If you share my sentiment, you should know that this shortcoming of $z \mapsto$ $z^{1 / 2}$ can be "fixed" by simply declaring that the function has the value of 0 at $z=0$ (this is the idea of a removable discontinuity) and the function then does become continuous at $z=0$ - but we won't worry about that.
(5) Yes, this is not all that hard, we just have to select a branch of the logarithm that is, in fact, continuous on $\operatorname{Re}(z)<0$. So, to this end, let's define

$$
\log _{3 \pi / 4}(z)=\log (|z|)+\arg _{3 \pi / 4}(z)
$$

where $\arg _{3 \pi / 4}$ is the branch of the argument with branch cut along the ray $\left\{z=r e^{-i \pi / 4}: r>0\right\}$ and range $(-\pi / 4,7 \pi / 4]$. It's not difficult to work out that

$$
\arg _{3 \pi / 4}(z)=\operatorname{Arg}\left(e^{-i 3 \pi / 4} z\right)+\frac{3 \pi}{4}
$$

It is straightforward to verify that $\log _{3 \pi / 4}$ is analytic except on its branch cut which lies in the forth quadrant. Consequently, this is an analytic function on $\operatorname{Re}(z)<0$ and thus continuous there. With it we define

$$
z^{1 / 2}=e^{(1 / 2) \log _{3 \pi / 4}(z)}
$$

for $z \neq 0$. For any such z, we can write $z=|z| e^{i \theta}$ where $(-\pi / 4,7 \pi / 4]$, with this representation, we observe that $\operatorname{Arg}_{3 \pi / 4}(z)=\theta$. Thus,

$$
\left(z^{1 / 2}\right)^{2}=e^{(2 / 2) \log _{3 \pi / 4}(z)}=e^{\log (|z|)} e^{i \operatorname{Arg}(z)}=|z| e^{i \theta}=z
$$

as desired.
(6) Okay.
(a) By properties of the exponential, we have
$z^{\alpha+\beta}=e^{(\alpha+\beta) \log (z)}=e^{\alpha \log (z)+\beta \log (z)}=e^{\alpha \log (z)} e^{\beta \log (z)}=z^{\alpha} z^{\beta}$.
for any $z \in \mathcal{D}^{*}$.
(b) I hope doing this question got you to think a little bit. In fact, it is not true that $\left(z^{\alpha}\right)^{\beta}=z^{\alpha \beta}$ for all complex numbers α, β, z. To see this, observe that

$$
\left(e^{2} \pi i\right)=e^{2 \pi i(\log (e))}=e^{2 \pi i(1+i 0)}=e^{2 \pi i}=1
$$

(as it must be). And therefore

$$
\left(e^{2 \pi i}\right)^{2 \pi i}=1^{2 \pi i}=e^{2 \pi i \log (1)}=e^{2 \pi i(0)}=e^{0}=1 .
$$

On the other hand,

$$
e^{(2 \pi i)(2 \pi i)}=e^{-4 \pi^{2}}<1
$$

and therefore

$$
\left(e^{2 \pi i}\right)^{2 \pi i} \neq e^{(2 \pi i)(2 \pi i)}
$$

The property does, however, hold whenever $\beta \in \mathbb{Z}$ (that I mean to add that as a hypotheses).
(c) By our first Item,

$$
z^{\alpha} z^{-\alpha}=z^{0}=1
$$

and so $z^{-\alpha}=1 / z^{\alpha}$, as desired.
(d) By its definition (and Theorem 3 on Page 69), $z \mapsto z^{\beta}$ is analytic on \mathcal{D}^{*} and

$$
\left.\frac{d}{d z} z^{\beta}=\frac{d}{d z}\left(e^{\beta \log (z)}\right)\right)=e^{\beta \log (z)} \beta \frac{d}{d z} \log (z)=\beta z^{\beta} \frac{d}{d z} \log (z)
$$

for $z \in \mathcal{D}^{*}$. Now, as we showed in class,

$$
\frac{d}{d z} \log (z)=\frac{1}{z}=z^{-1}
$$

whenever $z \in \mathcal{D}^{*}$. Therefore

$$
\frac{d}{d z} z^{\beta}=\beta z^{\beta} z^{-1}=\beta z^{\beta-1}
$$

for all $z \in \mathcal{D}$ where we have used Item 1 .

