
MATH 4220 HOMEWORK 5 SOLUTIONS

Exercise 1: To make things easier, we will first solve the problem if the hinge is
at the origin instead of at 1 + i. Let arg0 be the inverse of the function

exp : {z ∈ C; 0 ≤ Im(z) < 2π} → C∗.

That is, arg0 is the branch of the logarithm with branch cut the positive real axis,
which takes values in the range {z ∈ C; 0 ≤ Im(z) < 2π}. Let

f(z) := A · arg0(z) +B,

where A,B ∈ R are to be determined. Along the ray Arg(z) = 3π
2 , we have

0 = f(z) =
3π

2
A+B,

while along Arg(z) = 0, we have

10 = f(z) = B.

Thus, we must choose A = − 20
3π and B = 10. Next, we appropriately translate f

to obtain the solution φ(z) := f(z − 1− i).
Finally, we compute

φ(0) = f(−1− i) = − 20

3π
· 5π
4

+ 10 =
5

3
.

Exercise 2: From the equation

z = cos(w) =
eiw + e−iw

2
=

1

2
e−iw(e2iw + 1),

we get
(eiw)2 − 2zeiw + 1 = 0.

Appealing to the quadratic formula then gives

eiw = z +
√
z2 − 1,

which is multi-valued. Thus, we get

iw = log
(
z +

√
z2 − 1

)
,

which is also multi-valued.
First choose a branch of the square root which is analytic near z2 − 1, and then

choose a branch of the logarithm analytic near z +
√
z2 − 1. Then the chain rule

gives

d

dz
cos−1(z) =

1

i(z +
√
z2 − 1)

(
1 +

z√
z2 − 1

)
=

1

i
√
z2 − 1

.
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Depending on where the branch cut used to define the square root is relative to
z2 − 1, we have √

z2 − 1 = ±i
√
1− z2.

Note: It is more natural to leave the expression for cos−1(z) as 1
i
√
z2−1 , where the

branch of the square root used is the same as in the formula found in the first part
of this problem. This is because in general, if w 7→

√
w is a branch of the square

root, then
√
−w will be either i

√
w or −i

√
w depending on where w is relative to the

branch cut. Thus, in the formula in (11) in section 3.5 of the book, the branch of
the square root does not necessarily coincide with the branch chosen in formula (9).

Exercise 3: Solving the equation

z = tan(w) =
1

i

e2iw − 1

e2iw + 1

for e2iw gives

e2iw =
1 + iz

1− iz
,

so taking the (multi-valued) log of both sides gives

w =
1

2i
log

(
1 + iz

1− iz

)
=
i

2
log

(
1− iz
1 + iz

)
.

When z 6= ±i, we can pick a branch of the logarithm which is analytic near 1+iz
1−iz , 1+

iz, and 1− iz, and use the chain rule to compute

d

dz
tan−1(z) =

i

2

d

dz
log(1− iz)− i

2

d

dz
log(1 + iz)

=
i

2

(
−i

1 + iz
+
−i

1− iz

)
=

1

1 + z2

Here, we used the fact that log(w1

w2
)− log(w1) + log(w2) ∈ 2πiZ.

Exercise 4: For any a ∈ C, the function eaz is entire by the chain rule, with
derivative aeaz. Taking a = log(c) gives

d

dz
cz = log(c)elog(c)z = log(c)cz.

Exercise 5: (a) Using the parametrization γ(t) := (1 − t)z1 + tz2, t ∈ [0, 1], we
note that dγ

dt = z2 − z1, so that the length of this line segment is∫ 1

0

∣∣∣∣dγdt
∣∣∣∣ dt = ∫ 1

0

|z2 − z1|dt = |z2 − z1|.
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(b) Using the parametrization γ(t) := z0 + re2πit, t ∈ [0, 1], we note that dγ
dt =

2πire2πit, so that the length of this line segment is

2π

∫ 1

0

r|e2πit|dt = 2π

∫ 1

0

rdt = 2πr.

Exercise 6:
(1) By the chain rule, we have

z′2(s) =
d

ds
(z1(φ(s))) = z′1(φ(s))φ

′(s)

for s ∈ [c, d]. We note that, because φ′(s) ≥ 0,

|z′2(s)| = |z′1(φ(s))φ′(s)| = |z′1(φ(s))|φ′(s)
for all s ∈ [c, d]. Now, using the fact that φ(c) = a and φ(d) = b, we may
write ∫ d

c

|z′2(s)| ds =
∫ φ(b)

φ(a)

|z′1(φ(s))|φ′(s) ds

We may now use “u-substitution" (with u = φ(s) this is really the change-
of-variables formula from any calc 1 book) and find that∫ φ(b)

φ(a)

|z′1(φ(s))|φ′(s) ds =
∫ b

a

|z′1(u)| du =

∫ b

a

|z1(t)| dt

from which it follows that∫ d

c

|z′2(s)| ds =
∫ b

a

|z′1(t)| dt.

(2) Here, ∫ b

a

|z1(t)| dt =
∫ 1

0

|2πie2πit| dt =
∫ 1

0

2π dt = 2π

and ∫ d

c

|z2(s)| dt =
∫ −1
0

| − 2πie−2πis| dt =
∫ −1
0

2π ds = −2π

where we have used the property of the Riemann integral that∫ b

a

= −
∫ a

b

.

Thus, these integrals are not equal. This statement proven in Item 1 didn’t
apply here because φ′(t) = d

dt (−t) = −1 < 0.
(3) So, in Item 1 we showed that the length of a curve is preserved under

changes of parameterization where both parameterizations have the same
direction. That is, any change between admissible parameterizations. This
length, however, is not preserved when there is a change in directions, but
the way we have defined length. We could, of course, redefine length by
putting

`New(γ) =

∣∣∣∣∣
∫ b

a

|z′(t)| dt

∣∣∣∣∣
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where z is any smooth parameterization (regardless of whether or not it
is admissible) and things will work out. Still, as with line integrals, it is
important to have a notion of the integral that has a direction associated
to it and so we keep our definition as it stands.


