MATH 4220 HOMEWORK 6 SOLUTIONS

Exercise 1: For $j=0,1$, let $z_{j}(s, t)$ be a deformation of the contour Γ_{j} to a point w_{j}, so that $z_{j}(s, 0)=\Gamma_{j}(s), z_{j}(s, 1)=w_{j}$ for all $s \in[0,1]$. Because D is a domain, we can find a path $\eta:[0,1] \rightarrow D$ with $\eta(0)=w_{0}$ and $\eta(1)=w_{1}$. We Then a deformation of Γ_{0} to Γ_{1} is defined by deforming Γ_{0} to w_{0} via z_{0}, then deforming w_{0} to w_{1} via η, and finally deforming w_{1} to Γ_{2} via z_{1}. More concretely, the deformation of Γ_{0} to Γ_{1} is given as follows:

$$
\Gamma(s, t):=\left\{\begin{array}{cc}
\gamma_{0}(s, 3 t) & t \in[0,1 / 3] \\
\eta(3 t-1) & t \in[1 / 3,2 / 3] \\
\gamma_{1}(s, 3-3 t) & t \in[2 / 3,1]
\end{array} .\right.
$$

Note that $\Gamma(s, t)$ is continuous because it is obtained by "patching together" several continuous functions which agree where their domains overlap.

Exercise 2: Using the standard parametrization $\gamma(t):=e^{i t}, t \in[0,2 \pi]$, we compute

$$
\int_{|z|=1} \frac{1}{z^{k}} d z=\int_{0}^{2 \pi} \frac{1}{e^{i k t}} i e^{i t} d t=i \int_{0}^{2 \pi} e^{i(1-k) t} d t
$$

If $k=1$, the integrand on the right is uniformly 1 , so we get $\int_{|z|=1} z^{-1} d z=2 \pi i$. If $k \neq 1$, we get

$$
\int_{|z|=1} \frac{1}{z^{k}} d z=\frac{1}{1-k}\left(e^{2 \pi(1-k) i}-1\right)=0 .
$$

By the linearity of (line) integrals, we conclude

$$
\int_{|z|=1} f(z) d z=2 \pi i A_{1}+\int_{|z|=1} g(z) d z
$$

but $\int_{|z|=1} g(z) d z=0$ since g is analytic in $\{|z| \leq 1\}$.

Exercise 3:

(a) First observe that $z \mapsto \frac{1}{z^{2}(z-1)^{3}}$ is analytic everywhere except $z=0$ and $z=1$. Moreover, we can deform $\{|z|=2\}$ to $\{|z|=R\}$ without passing through the points $z=0, z=1$, so this claim follows from the Deformation Invariance Theorem (Theorem 8 in section 4.4).
(b) When $|z|=R \geq 2$, we can estimate $|z-1| \geq R-1>0$, so that

$$
|I(R)| \leq \int_{|z|=R}\left|\frac{1}{z^{2}(z-1)^{3}}\right| \cdot|d z| \leq \int_{|z|=R} \frac{1}{R^{2}(R-1)^{3}}|d z|=\frac{2 \pi}{R(R-1)^{3}} .
$$

(c) Because $\lim _{R \rightarrow \infty} R(R-1)^{3}=+\infty$, this follows from (b).
(d) By part (a), we know $I=I(R)$ for every $R>2$, so the claim follows from part (c).

Exercise 4: We choose the standard parametrization $\gamma(t):=z_{0}+r e^{i t}, t \in[0,2 \pi]$, and apply Cauchy's integral formula:

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-z_{0}} d z=\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(z_{0}+r e^{i t}\right)}{r e^{i t}} i r e^{i t} d t=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i t}\right) d t .
$$

By differentiating Cauchy's integral formula n times (or equivalently, using Theorem 19 of section 4.5), we also have

$$
\begin{aligned}
f^{(n)}\left(z_{0}\right) & =\frac{n!}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d z=\frac{n!}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(z_{0}+r e^{i t}\right)}{r^{n+1} e^{i(n+1) t}} i r e^{i t} d t \\
& =\frac{n!}{2 \pi r^{n}} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i t}\right) e^{-i n t} d t
\end{aligned}
$$

Exercise 5: (a) In this case, Γ can be deformed to a circle centered at z without passing through the point ζ, so the Deformation Invariance Theorem gives $G(z)=\cos (z)$, and the continuity of cos implies that the requested limit in (a) is equal to $\cos (2+3 i)$.
(b) In this case, the function $\zeta \mapsto \frac{\cos (\zeta)}{\zeta-z}$ is analytic on a domain containing the region bounded by Γ, so $G(z)=0$, and the requested limit is 0 .

Exercise 6: (1) Because f is entire, this follows from the Deformation Invariance Theorem.
(2) Because

$$
\int_{\gamma_{1}} f(z) d z=\int_{0}^{R} e^{-t^{2}} d t
$$

we can take $R \rightarrow \infty$ to get

$$
\lim _{R \rightarrow \infty} \int_{\gamma_{1}} f(z) d z=\int_{0}^{\infty} e^{-t^{2}} d t=\frac{\sqrt{\pi}}{2}
$$

Next, we use

$$
\int_{\gamma_{2}} f(z) d z=\int_{0}^{\frac{\pi}{4}} e^{-R^{2} e^{2 i t}} i R e^{i t} d t
$$

to estimate

$$
\left|\int_{\gamma_{2}} f(z) d z\right| \leq R \int_{0}^{\frac{\pi}{4}} e^{-R^{2} \cos (2 t)} d t
$$

Next, we observe that because $\cos \left\lvert\,\left[0, \frac{\pi}{4}\right]\right.$ is concave $\left(\cos ^{\prime \prime}=-\cos <0\right.$ on this interval), we have $\cos (t) \geq \frac{4}{\pi}\left(\frac{\pi}{4}-t\right)$, so

$$
\left|\int_{\gamma_{2}} f(z) d z\right| \leq R e^{-R^{2}} \int_{0}^{\frac{\pi}{4}} e^{R^{2} \frac{4}{\pi} t} d t=\left.R e^{-R^{2}} \frac{\pi}{4 R^{2}} e^{R^{2} \frac{4}{\pi} t}\right|_{t=0} ^{t=\frac{\pi}{4}} \leq \frac{\pi}{4 R}
$$

In particular, $\lim _{R \rightarrow \infty} \int_{\gamma_{2}} f(z) d z=0$.
(3) Since $e^{\frac{\pi i}{4}}=\frac{1+i}{\sqrt{2}}$ and $e^{\frac{\pi i}{2}}=i$, we can compute

$$
\int_{\gamma_{3}} f(z) d z=\left(\frac{1+i}{\sqrt{2}}\right) \int_{0}^{R} e^{-i t^{2}} d t=\left(\frac{1+i}{\sqrt{2}}\right)\left(\int_{0}^{R} \cos \left(t^{2}\right) d t-i \int_{0}^{R} \sin \left(t^{2}\right) d t\right) .
$$

Taking $R \rightarrow \infty$ gives

$$
\lim _{R \rightarrow \infty} \int_{\gamma_{3}} f(z) d z=\left(\frac{1+i}{\sqrt{2}}\right)(C-i S)
$$

(4) Combining parts (1) - (3) gives

$$
\left(\frac{1+i}{\sqrt{2}}\right)(C-i S)=\lim _{R \rightarrow \infty} \int_{\gamma_{3}} f(z) d z=\frac{\sqrt{\pi}}{2}
$$

Rearranging this expression gives

$$
(C+S)+i(C-S)=\sqrt{\frac{\pi}{2}}
$$

so $C=S$, and $C=\sqrt{\frac{\pi}{8}}=S$.

