MATH 4220 HOMEWORK 8 SOLUTIONS

Exercise 1: (1) We compute

$$
\begin{aligned}
\widehat{f}(n) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \cos (2 \theta) e^{i n \theta} d \theta=\frac{1}{4 \pi} \int_{-\pi}^{\pi}\left(e^{2 i \theta}+e^{-2 i \theta}\right) e^{i n \theta} d \theta \\
& =\left\{\begin{array}{cc}
\frac{1}{2} & n= \pm 2 \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

(2) We compute $S_{0}=S_{1}(\theta)=0$, whereas for all $N \geq 2$, we have

$$
S_{N}(\theta)=\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right)=\cos (2 \theta)
$$

(4) The Fourier series converges to f since $S_{N}=f$ for all $N \geq 2$.
(5) The analytic function $F(z):=\frac{1}{2}\left(z^{2}+z^{-2}\right)$ satisfies $F\left(e^{i \theta}\right)=\cos (2 \theta)$.

Exercise 2: (1) When $n \neq 0$, integration by parts gives

$$
\begin{aligned}
\widehat{f}(n) & =\frac{1}{2 \pi^{2}} \int_{-\pi}^{\pi} \theta e^{-i n \theta} d \theta=\frac{1}{2 \pi^{2}}\left(\left.\frac{\theta}{-i n} e^{-i n \theta}\right|_{\theta=-\pi} ^{\theta=\pi}+\int_{-\pi}^{\pi} \frac{1}{i n} e^{-i n \theta} d \theta\right) \\
& =\frac{i}{2 \pi^{2} n}\left(\pi e^{-i n \pi}+\pi e^{i n \pi}\right)=\frac{i}{\pi n} \cos (n \pi)=\frac{(-1)^{n} i}{\pi n} .
\end{aligned}
$$

Moreover, because $\theta \mapsto \theta / \pi$ is odd, we know $\widehat{f}(0)=0$.
(2) We may thus compute

$$
S_{N}(\theta)=\frac{i}{\pi} \sum_{n=1}^{N}(-1)^{n}\left(\frac{1}{n} e^{i n \theta}+\frac{1}{-n} e^{-i n \theta}\right)=-\frac{2}{\pi} \sum_{n=1}^{N} \frac{(-1)^{n}}{n} \sin (n \theta)
$$

(3) The following is the plot of S_{10} from -2π to 2π :

(4) The previous plot suggests that S_{N} should converge to f away from the discontinuities $\theta=(2 k+1) \pi, k \in \mathbb{Z}$. However, we can see directly that $S_{N}((2 k+1) \pi)=0$, so while $\lim _{N \rightarrow \infty} S_{N}((2 k+1) \pi)=0$ exists, it is not equal to $f(0)=1$.
(5) Such a function F cannot exist because this would imply $f(\theta)=F\left(e^{i \theta}\right)$ would be continuous, which it is not.

Exercise 3: Observe that the function

$$
g(z):=2 \cos (z)-2+z^{2}
$$

has everywhere convergent Taylor expansion given by

$$
g(z)=-2+z^{2}+2 \sum_{k=0}^{\infty} \frac{(-1)^{k} z^{2 k}}{(2 k)!}=2 \sum_{k=2}^{\infty} \frac{(-1)^{k} z^{2 k}}{(2 k)!}
$$

so has a zero of order 4 at $z=0$. This means that $f(z)=1 /\left(g(z)^{2}\right)$ has a pole of order 8 at $z=0$ by Lemma 8 of section 5.6.

Exercise 4: By replacing $f(z)$ with $f\left(z-z_{0}\right)$, we can assume $z_{0}=0$. Suppose f does not achieve values arbitrarily close to some $c \in \mathbb{C}$ near $z=0$. This means there exists $\delta>0$ and some puncture disk $\mathbb{D}\left(0, r_{0}\right) \backslash\{0\}$ such that $|f(z)-c| \geq \delta$ for all $z \in \mathbb{D}\left(0, r_{0}\right) \backslash\{0\}$. Then

$$
g(z):=\frac{1}{f(z)-c}
$$

is an analytic function satisfying $|g(z)| \leq \delta^{-1}$ for all $z \in \mathbb{D}\left(0, r_{0}\right)$. By Problem 13, f has a removable singularity at $z=0$; that is,

$$
w:=\lim _{z \rightarrow 0} g(z) \in \mathbb{C}
$$

exists. Because g is nonvanishing on $\mathbb{D}\left(0, r_{0}\right) \backslash\{0\}$, it is in particular not identically zero, so we can write $g(z)=z^{k} h(z)$ for some $k \in \mathbb{N}$ and some analytic function h on $\mathbb{D}\left(0, r_{0}\right)$ with $h(0) \neq 0$. Thus

$$
z^{k} f(z)=z^{k} c+\frac{1}{h(z)}
$$

where the right hand side is uniformly bounded. In particular, Problem 13 implies that $f(z)$ has a removable singularity, or a pole of order at most k.

Problem 5: By definition, $g(z):=f(1 / z)$ has a removable singularity at ∞, so extends to an analytic function on some disk $\mathbb{D}\left(0,2 r_{0}\right)$. The Taylor series

$$
\sum_{n=0}^{\infty} a_{n} z^{n}
$$

of g then converges uniformly to g on $\mathbb{D}\left(0, r_{0}\right) \backslash\{0\}$. This is equivalent to the uniform convergence

$$
\sum_{n=0}^{\infty} a_{n} z^{-n}=f(z)
$$

on $\mathbb{D}\left(0, r_{0}^{-1}\right)$.

Problem 6: We consider a contour similar to that used in the proof of Theorem 14 in section 5.5 of the textbook:

where the outer contour is $\partial \mathbb{D}(0, R)$ and the inner contour is $-\Gamma$ (Γ is negatively oriented). Because $g(z)=f(1 / z)$ is analytic and $g(0)=0$, we can write $g(z)=$ $z h(z)$ for some analytic function h in the interior of $\{1 / z ; z \in \Gamma\}$. Setting $\gamma(t):=$ $R e^{i t}, t \in[0,2 \pi]$ for $R \gg 1$, we can compute

$$
\begin{aligned}
\left|\frac{1}{2 \pi i} \int_{\partial \mathbb{D}(0, R)} \frac{\frac{1}{\zeta} h\left(\frac{1}{\zeta}\right)}{\zeta-z} d \zeta\right| & =\left|\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{R^{-1} e^{-i t} h\left(R^{-1} e^{-i t}\right)}{R e^{i t}-z} i R e^{i t} d t\right| \\
& \leq \frac{\max _{\overline{\mathbb{D}}\left(0, R^{-1}\right)}|h|}{2 \pi} \int_{0}^{2 \pi} \frac{1}{R-|z|} d t \\
& \leq \frac{2}{R} \max _{\overline{\mathbb{D}}\left(0, R^{-1}\right)}|h|
\end{aligned}
$$

On the other hand, Cauchy's integral formula applied to the above contour gives

$$
f(z)=\frac{1}{2 \pi i} \int_{\partial \mathbb{D}(0, R)} \frac{\frac{1}{\zeta} h\left(\frac{1}{\zeta}\right)}{\zeta-z} d \zeta+\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

so the claim follows by taking $R \rightarrow \infty$.

