MATH 4220 HOMEWORK 8 SOLUTIONS

Exercise 1: (1) We compute
™ ™

f(n) = 217r cos(20)e?dh = %/ (€% 4 7210 gp

3 n==%2
| 0 otherwise
(2) We compute Sy = S1(0) = 0, whereas for all N > 2, we have
1 . .
Sn(0) = i(ew + ey = cos(26).
(4) The Fourier series converges to f since Sy = f for all N > 2.

—T

(5) The analytic function F(z) := 3(22 + 272) satisfies F(e?) = cos(26).
Exercise 2: (1) When n # 0, integration by parts gives

9=7T T 1 )
+ / ,6_2n9d9>
O=—n —

—inm nmT\ __ L _ (71)’”2
52 (me + me'T) = p—- cos(nm) = —

o2 [ 22 \ —in

~ 1 g . 1 ;
f(n) fe=""df = (96—“19

i
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Moreover, because 6 — 0/ is odd, we know f(0) = 0.

(2) We may thus compute

N n
Sn(0) = > (=1 (iemo + 1nem0> = f% > (=) sin(nf).

n
n=1

n=1

(3) The following is the plot of S1g from —27 to 27
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(4) The previous plot suggests that Sy should converge to f away from the discon-
tinuities 8 = (2k+1)7, k € Z. However, we can see directly that Sy ((2k+1)m) = 0,
so while limy_,o0 Sn((2k 4+ 1)7) = 0 exists, it is not equal to f(0) = 1.

(5) Such a function F cannot exist because this would imply f(0) = F(e?) would
be continuous, which it is not.

Exercise 3: Observe that the function
g(2) == 2cos(z) — 2 + 2*
has everywhere convergent Taylor expansion given by

IcZ2lc )Ic 2k

= (~1 = (—1)kz
g(z):—2+z2+2kz_0((2)k)!:2z((%)!,

k=2

so has a zero of order 4 at z = 0. This means that f(z) = 1/(g(z)?) has a pole of
order 8 at z = 0 by Lemma 8 of section 5.6.

Exercise 4: By replacing f(z) with f(z — 29), we can assume zp = 0. Suppose
f does not achieve values arbitrarily close to some ¢ € C near z = 0. This means
there exists § > 0 and some puncture disk D(0,rg) \ {0} such that |f(z) —c| > §
for all z € D(0,79) \ {0}. Then

1
g(z) == m

is an analytic function satisfying |g(z)| < =1 for all z € D(0, ). By Problem 13,
f has a removable singularity at z = 0; that is,

=i C
w = lim g(z) €
exists. Because g is nonvanishing on (0, ) \ {0}, it is in particular not identically

zero, so we can write g(z) = z*h(z) for some k& € N and some analytic function h
on (0, rg) with h(0) # 0. Thus

2Ff(2) = 2re+ 1

h(z)’

where the right hand side is uniformly bounded. In particular, Problem 13 implies
that f(z) has a removable singularity, or a pole of order at most k.

Problem 5: By definition, g(z) := f(1/z) has a removable singularity at oo, so
extends to an analytic function on some disk D(0, 2r¢). The Taylor series

oo
E a2,
n=0
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of g then converges uniformly to g on D(0,79) \ {0}. This is equivalent to the

uniform convergence
oo
Z anz” " = f(2)

n=0

on D(0,7,").

Problem 6: We consider a contour similar to that used in the proof of Theorem
14 in section 5.5 of the textbook:

G

(c)

where the outer contour is 0D(0, R) and the inner contour is —I' (T" is negatively
oriented). Because g(z) = f(1/2) is analytic and g(0) = 0, we can write g(z) =
zh(z) for some analytic function h in the interior of {1/z;z € T'}. Setting ~(¢) :=
Re®t, t € [0,27] for R >> 1, we can compute

1p(L T p—1,—i —1,—i
i/ MO el = 1/2 R R T pigy
270 Jon(o,r) C — %2 21t Jo Reit — 2
maxs o po1y |B| [27

p D(0,R 1)| |/ 1 &t

- 27 o R—|z|

< — max |h|.

- RE(O,R*1)| |

On the other hand, Cauchy’s integral formula applied to the above contour gives
1701

1p(L
f(2) = = MO ey L /&dg

270 Jopomy — 2 2mi Jp (-2

so the claim follows by taking R — oo.




