
MATH 4220 HOMEWORK 8 SOLUTIONS

Exercise 1: (1) We compute

f̂(n) =
1

2π

∫ π

−π
cos(2θ)einθdθ =

1

4π

∫ π

−π
(e2iθ + e−2iθ)einθdθ

=

{
1
2 n = ±2
0 otherwise .

(2) We compute S0 = S1(θ) = 0, whereas for all N ≥ 2, we have

SN (θ) =
1

2
(eiθ + e−iθ) = cos(2θ).

(4) The Fourier series converges to f since SN = f for all N ≥ 2.

(5) The analytic function F (z) := 1
2 (z2 + z−2) satisfies F (eiθ) = cos(2θ).

Exercise 2: (1) When n 6= 0, integration by parts gives

f̂(n) =
1

2π2

∫ π

−π
θe−inθdθ =

1

2π2

(
θ

−in
e−inθ

∣∣∣∣θ=π
θ=−π

+

∫ π

−π

1

in
e−inθdθ

)

=
i

2π2n

(
πe−inπ + πeinπ

)
=

i

πn
cos(nπ) =

(−1)ni

πn
.

Moreover, because θ 7→ θ/π is odd, we know f̂(0) = 0.

(2) We may thus compute

SN (θ) =
i

π

N∑
n=1

(−1)n
(

1

n
einθ +

1

−n
e−inθ

)
= − 2

π

N∑
n=1

(−1)n

n
sin(nθ).

(3) The following is the plot of S10 from −2π to 2π:

.
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(4) The previous plot suggests that SN should converge to f away from the discon-
tinuities θ = (2k+1)π, k ∈ Z. However, we can see directly that SN ((2k+1)π) = 0,
so while limN→∞ SN ((2k + 1)π) = 0 exists, it is not equal to f(0) = 1.

(5) Such a function F cannot exist because this would imply f(θ) = F (eiθ) would
be continuous, which it is not.

Exercise 3: Observe that the function

g(z) := 2 cos(z)− 2 + z2

has everywhere convergent Taylor expansion given by

g(z) = −2 + z2 + 2

∞∑
k=0

(−1)kz2k

(2k)!
= 2

∞∑
k=2

(−1)kz2k

(2k)!
,

so has a zero of order 4 at z = 0. This means that f(z) = 1/(g(z)2) has a pole of
order 8 at z = 0 by Lemma 8 of section 5.6.

Exercise 4: By replacing f(z) with f(z − z0), we can assume z0 = 0. Suppose
f does not achieve values arbitrarily close to some c ∈ C near z = 0. This means
there exists δ > 0 and some puncture disk D(0, r0) \ {0} such that |f(z) − c| ≥ δ
for all z ∈ D(0, r0) \ {0}. Then

g(z) :=
1

f(z)− c

is an analytic function satisfying |g(z)| ≤ δ−1 for all z ∈ D(0, r0). By Problem 13,
f has a removable singularity at z = 0; that is,

w := lim
z→0

g(z) ∈ C

exists. Because g is nonvanishing on D(0, r0)\{0}, it is in particular not identically
zero, so we can write g(z) = zkh(z) for some k ∈ N and some analytic function h
on D(0, r0) with h(0) 6= 0. Thus

zkf(z) = zkc+
1

h(z)
,

where the right hand side is uniformly bounded. In particular, Problem 13 implies
that f(z) has a removable singularity, or a pole of order at most k.

Problem 5: By definition, g(z) := f(1/z) has a removable singularity at ∞, so
extends to an analytic function on some disk D(0, 2r0). The Taylor series

∞∑
n=0

anz
n.
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of g then converges uniformly to g on D(0, r0) \ {0}. This is equivalent to the
uniform convergence

∞∑
n=0

anz
−n = f(z)

on D(0, r−1
0 ).

Problem 6: We consider a contour similar to that used in the proof of Theorem
14 in section 5.5 of the textbook:

where the outer contour is ∂D(0, R) and the inner contour is −Γ (Γ is negatively
oriented). Because g(z) = f(1/z) is analytic and g(0) = 0, we can write g(z) =
zh(z) for some analytic function h in the interior of {1/z; z ∈ Γ}. Setting γ(t) :=
Reit, t ∈ [0, 2π] for R >> 1, we can compute∣∣∣∣∣ 1

2πi

∫
∂D(0,R)

1
ζh( 1

ζ )

ζ − z
dζ

∣∣∣∣∣ =

∣∣∣∣ 1

2πi

∫ 2π

0

R−1e−ith(R−1e−it)

Reit − z
iReitdt

∣∣∣∣
≤

maxD(0,R−1) |h|
2π

∫ 2π

0

1

R− |z|
dt

≤ 2

R
max

D(0,R−1)
|h|.

On the other hand, Cauchy’s integral formula applied to the above contour gives

f(z) =
1

2πi

∫
∂D(0,R)

1
ζh( 1

ζ )

ζ − z
dζ +

1

2πi

∫
Γ

f(ζ)

ζ − z
dζ,

so the claim follows by taking R→∞.


