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1 The Bar Spectral Sequence
The study of iterated loop spaces is a central aspect of homotopy theory; nowadays the study of infinite

loop spaces goes by the name of stable homotopy theory and accounts for a sizeable portion of modern
homotopy theoretic research. In the study of such spaces, it is natural to think about deloopings: given
a loop space T , a delooping of T is a space BT such that T ' ΩBT . For example, for any (discrete or
topological) group G, the delooping BG is also called the classifying space of G and has the property that
isomorphism classes of G-bundles on a space X are in natural bijection with homotopy classes [X, BG].

Much of the study of infinite loop spaces has been concentrated on recognition principles: given a space
T , how can we tell whether or not a space BT satisfying the defining property T ' ΩBT exists? One first
observation is that loop spaces possess a multiplication via loop concatenation, so a necessary condition
is for T to possess a multiplication. A further note is that loop concatenation is unital and associative (up
to homotopy), and furthermore that every loop has an inverse loop (up to homotopy). It turns out that the
“up to homotopy” nature of unitality/associativity is simple in the sense that one may as well assume the
multiplication is strictly associative/unital, and this turns out to be necessary and sufficient:

Theorem 1.1. A space T has a delooping BT if and only if it possesses (up to weak homotopy equivalence)
an associative, unital multiplication such that the induced monoid structure on π0(T ) is a group.

In light of this theorem, we will study the category TopAssMon of associative monoids in Top. The
elements of this category are spaces T equipped with a unital, associative multiplication. This includes
spaces for which π0(T ) may not be a group (for instance, N); we include these in our study despite the fact
that they cannot possess deloopings for reasons that we will remark upon later.

One major difficulty in the study of loop spaces is the difficulty of understanding their (co)homology:
the most obvious example is the (co)homology of Eilenberg-Maclane spaces. By beginning with an abelian
group A and repeatedly applying B to obtain A, BA, B2A, ... we obtain the sequence of Eilenberg-Maclane
spaces K(A, 0),K(A, 1),K(A, 2), ... (this follows from the definition of B and the long exact sequence of a
fibration applied to ΩK(A, n) → PK(A, n) → K(A, n)). The (co)homology of these spaces is both deeply
interesting and highly nontrivial: in fact, the cohomology of K(A, n) is exactly the group of cohomology
operations for cohomology with coefficients in A, an application of the Brown Representability Theorem
and the Yoneda Lemma. These groups are complex enough that (to the author’s knowledge) there is no
place in which they are concisely written down (though descriptions of their localization at a prime p can
be found in notes from the 1954-1955 Cartan Seminar). The Bar Spectral Sequence is a device designed
precisely to deal with this hurdle: Given a topological associative monoid T , the bar spectral sequence takes
as input homological data about T and converges to the homology of the delooping BT . Constructing and
understanding this spectral sequence is the goal of this section. But first, if we are to have any hope of
computing anything about BX, we had better give some sort of explicit construction.

1.1 The Bar Construction
Recall that the space of Moore loops of a space X, which we will denote ΩsX, consists of functions

` : [0, n]→ X with `(0) = `(n) = base(X). It turns out that the natural reparameterization map ΩsX → ΩX is
a homotopy equivalence. Furthermore, ΩsX has a strictly unital, associative multiplication via concatenation
(the “s” superscript is for strict), and hence provides a functor Top → TopAssMon. The basic idea of the
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bar construction is this: we want to construct a functor B : TopAssMon → Top, with the property that it is
almost a one-sided inverse to Ωs: for a connected space X, we should have a weak homotopy equivalence
X ' BΩsX.1

First, let us consider the easiest case: the case of an ordinary discrete group. If a discrete group G is
(up to homotopy) homotopy equivalent to ΩsX for some X, it follows that X is a K(G, 1). So in this case,
constructing BG is in fact equivalent to constructing a K(G, 1). To make things easier on ourselves, we
attempt to build BG as a simplicial set: since BG is connected, we may as well take BG0 = {•}. Then, every
1-simplex of BG will be a loop, so we might as well take BG1 to be the set |G|. Of course, we can’t stop
here: if we did, then we would end up with a K(F〈|G|〉, 1). We need to add in some two simplices to encode
the multiplication in G. So for triples of elements a, b, c ∈ G such that ab = c, we throw in a 2-simplex ∆ab=c

such that δ0(∆ab=c) = b, δ1(∆ab=c) = c, and δ2(∆ab=c) = b. This correctly provides a homotopy between
loops ab ∼ c. We do this for every such triple, obtaining BG2 = {(a, b, c) ∈ G ×G ×G|ab = c}. Of course,
this is a rather redundant way to write this: since we start with the multiplication of G as given knowledge,
if we are given a and b then there is exactly one triple (a, b, c) which appears in this set, the triple (a, b, ab).
So we can equivalently write BG2 = G ×G. In this case our boundary maps become written as d0(a, b) = b,
d1(a, b) = ab, d2(a, b) = a. Now, what about BG3? We may have it be the case that we have some π2 that we
need to kill off after having added in these relations, which sounds complicated. But, at this point maybe we
see the pattern forming and guess BG3 = G × G × G, with the boundary maps given by d0(a, b, c) = (b, c),
d1(a, b, c) = (ab, c), d2(a, b, c) = (a, bc), and d3(a, b, c) = (a, b). If we continue on in this pattern, we create
a simplicial set that looks like:

· · · G ×G ×G G ×G G ∗

It turns out that this is correct:

Theorem 1.2. For a discrete group G, denote by BG the geometric realization of the simplicial set with
n-simplices Gn, boundary maps described by

di(g1, ..., gn) =


(g1, ..., gn) if i = 0
(g1, ..., gigi+1, ..., gn) if 0 < i < n
(g1, ..., gn−1) if i = n

and degeneracy maps described by si(g1, ..., gn) = (g1, ..., e, gi, ..., gn). Then the map G → ΩBG given by
mapping a ∈ G to the 1-simplex labelled by a is a homotopy equivalence. In particular, BG is a K(G, 1).

Proof. As we will later prove this for the more general case of G a space, we quickly sketch an alternate
proof here that works only when G is discrete.

The description above is equivalent to saying that BG is the geometric realization of the nerve of the
groupoid with a single object • and End(•) = G. The nerve is a 2-coskeletal connected Kan complex, and
so in particular is a K(π, 1) where π can be described as the group generated by the 1-simplices, modulo the
relations given by the 2-simplices. This is precisely saying that π � G. �

We now turn our attention to the general case: suppose we are given some object T ∈ TopAssMon. Then
we can imitate the above construction, and form the simplicial diagram

· · · T × T × T T × T T ∗

1A little reflection should convince yourself this is the best we could ask for, as the space ΩsX depends only on the connected
component of the basepoint.
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Of course, now T n is a space, rather than merely a set. Fortunately, this poses no real problem: we can take
the geometric realization of a simplicial space with little more difficulty that taking the geometric realization
of a simplicial set.2 Thus, we can define BT to be this geometric realization.

Theorem 1.3. The above defines a functor B : TopAssMon → Top. Furthermore, for any connected space
X there is a weak homotopy equivalence X → BΩsX.

Before diving into the proof, we need to develop a little more theory.

1.1.1 The two sided bar construction

We now dive into a little more generality, an enjoyable leap that will clarify which structures are essential
to our current activity and which are merely coincidental. Let C be a monoidal category with unit I. Let T
be a monoid in T : that is, an object equipped with a a unit morphism ι : I → T and a unital, associative
multiplication morphism µ : T ⊗ T → T .

Now suppose that in addition to the monoid T , we have objects M and N of C which are modules over
T : that is to say, we have maps M ⊗ T → M and T ⊗ N → N which satisfy some identities3, making M a
right T -module and N a left T -module. Then, we can form a simplicial object which we will call B(M,T,N),
where B(M,T,N)i = M ⊗ T⊗i ⊗ N.

· · · M ⊗ T ⊗ T ⊗ N M ⊗ T ⊗ N M ⊗ N

In many cases we also have a functor | − | : C∆op
→ C called a “geometric realization,” which tells us how to

take a simplicial object in C and produce an ordinary object of C. For instance, we can take the geometric
realization of a simplicial space (a simplicial object in Top, and get a space).

So what’s the point of this? Well, for now we won’t actually need the full generality, but it helps us state
the following:

Lemma 1.4. Let T ∈ TopAssMon, and Y ∈ Top be a module over T . Then |B(T,T,Y)| is homotopy equivalent
to Y.

Proof. We define a function f : Y → |B(T,T,Y)| via the inclusion of Y into the diagram. In the other
direction, we define a function g : |B(T,T,Y)| → Y via (t0, ..., tn, y) → (t0(t1(· · · (tn · y)))). We claim these
are homotopy inverse to each other: g ◦ f is easy as it is a genuine inverse. For the other direction, one can
write out an explicit simplicial homotopy. �

In particular, the trivial space ∗ is a module over every monoid, and so we get

Corollary 1.5. B(T,T, ∗) is weakly contractible, for any T ∈ TopAssMon.

The bar construction has some other nice structure: if M is an (S ,T ) bimodule; that is, if we have
compatible actions S ⊗ M → M and M ⊗ T → M, then we get an induced action of S on B(M,T,N) by
acting levelwise. In particular, T is a (T,T ) bimodule, and so we have an action of T on |B(T,T,N)|. We
may quotient out by this action, and when we do, what we are left with, we obtain precisely |B(∗,T,N)|.
Furthermore, the quotient map has fiber T over the base point. If T was a topological group, it would follow

2Exercise to the reader who has not seen this concept before: formulate a definition of geometric realization of a simplicial set S •
as a colimit of spaces S n × ∆n, and then realize that this makes sense even when S n is a space rather than a set.

3The reader is highly encouraged to write out what precisely these identities should be, guided by the simplicial identites applied to
the simplicial object we are about to construct.
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that the quotient map had fiber T over every point and was in fact a fibre bundle. In the general case this is
not necessarily true, but we can prove the next best thing: that the quotient map is a fibration with fibre of
constant homotopy type T . First, a lemma:

Lemma 1.6. Let T ∈ AM be such that π0(T ) is a group. Then the action of T on itself by φa(t) = at is a
homotopy equivalence for every s ∈ T.

Proof. By assumption, for any a ∈ T there is some element b such that as in π0, [ab] = [e]. In other words,
there is a path p : I → T with p(0) = e and p(1) = ab. We define an explicit homotopy between φe and
φab = φa ◦ φb by f (t, i) = φp(i)(t). This demonstrates that φb is a right homotopy inverse for φa, and similarly
we can show it is a left homotopy inverse. �

With this in hand, we are able to prove the last lemma we need to prove the bar construction provides a
delooping:

Lemma 1.7. Let T ∈ TopAssMon be such that π0(T ) is a group. Then the sequence T → B(T,T, ∗) →
B(∗,T, ∗) is a fibre sequence.

Proof. The proof can be found in Appendix D of [2]; I have no improvement to offer over the exposition
there. �

Putting this all together with a little lemma, we obtain the proof we have been seeking:

Proof that bar construction gives delooping. Consider the map B(T,T, ∗) → B(∗,T, ∗). By the above, this
is a fibration with fibre T . Inspecting the LES in homotopy of the fibration, and then appealing to our
observation about contractibility, we get an explicit WHE ΩBT → T . For the other direction, we have that
ΩBΩsX ' ΩsX ' ΩX, and so provided X is connected we get that BΩsX ' X. �

1.2 Algebraic bar construction, constructing the spectral sequence
Having proved that BT := B(∗,T, ∗) is a delooping of T for T a grouplike monoid, we would like to get
some handle on the homology of this space. Luckily, it comes with a rather nice filtration, and so we get a
spectral sequence with terms on the E1 page given by Hi(BT j, BT j−1), converging to H∗(BT ). Of course, this
is not a terribly useful description - we would like to find a more succinct description of the initial page. We
will leave this motivation aside for a moment as we redo some of our work in an algebraic context, before
bringing it all back together to finish off our description of the spectral sequence. Alas, proving the theorems
of this section is an exercise in homological algebra, and thus a work of precision and patience. We sketch
all of the main points, and leave the reader interested in verifications to read the excellent exposition in [4]
if they feel anything substantial is missing.

As we said before, we can peform bar constructions in any monoidal category. Consider the category of
nonnegatively graded chain complexes over a field k; it is equipped with a tensor product of chain complexes
defined by

(C ⊗ D)n = ⊕i+ j=nCi ⊗ D j

This makes it into a monoidal category, and so in particular we can speak of monoids in it and their modules,
and in particular bar constructions.

Example Let T ∈ TopAssMon. Working over a field k, the map T×T → T yields a map C•(T×T )→ C•(T ),
and along with the Kunneth isomorphism C•(T ) ⊗ C•(T ) → C•(T × T ), this gives C•(T ) the structure of a
monoid in Chk. Similarly, for M a T -module, C•(M) becomes a C•(T )-module.
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Let Γ be a monoid in Chk, N a left Γ-module. Denote by Γ̃ the cokernel of the unit map k[0] → Γ. We
consider the bar construction B(Γ, Γ̃,N).

· · · Γ ⊗ Γ̃ ⊗ Γ̃ ⊗ N Γ ⊗ Γ̃ ⊗ N Γ ⊗ N

Here we are using the fact that Γ̃ is a monoid, and Γ and N are Γ̃-modules. We pull a standard trick: we
take the simplicial diagram and leverage the additive structure in our category (our ability to add morphisms
together) in order to produce a chain complex:

· · · Γ ⊗ Γ̃ ⊗ Γ̃ ⊗ N Γ ⊗ Γ̃ ⊗ N Γ ⊗ N
d0−d1+d2−d3 d0−d1+d2 d0−d1

This gives us a chain complex of chain complexes. We can extend this to the right with the structure map of
N as a Γ-module to get

· · · Γ ⊗ Γ̃ ⊗ Γ̃ ⊗ N Γ ⊗ Γ̃ ⊗ N Γ ⊗ N N 0
d0−d1+d2−d3 d0−d1+d2 d0−d1

Theorem 1.8. The above sequence is exact, and furthermore the terms to the left of N are all projective as
Γ-modules. So, this gives a projective resolution of N as a Γ-module.

Admittedly, we haven’t said carefully what we mean by a projective resolution (it’s a fair bit more complex
than in the discrete case), but the reader interested in the details of these things should seek them out in
[UGSS]. Now suppose that we have a right Γ-module M; if we tensor (taking the tensor product over Γ) on
the left with M, we will obtain

· · · M ⊗ Γ̃ ⊗ Γ̃ ⊗ N M ⊗ Γ̃ ⊗ N M ⊗ N
d0−d1+d2−d3 d0−d1+d2 d0−d1

Which is precisely the definition of B(M,Γ,N).
With these big “chain complexes of chain complexes,” we call the differentials of the individual chain

complexes Γ ⊗ · · · ⊗ N the internal differentials and denote them using δ. We call the differentials
∑

i(−1)idi

the external differentials and denote them using D. We can form a single chain complex called the total
complex of this double complex, which we denote |B(Γ, Γ̃,N)| by setting

|B(Γ, Γ̃,N)|n =
∑

i+ j=n

(Γ ⊗ Γ̃⊗i ⊗ N) j

And by setting the differential to be D + (−1)iδ.

Definition Let Γ be a monoid in Chk, M and N right and left Γ modules, respectively. Tor(M,N) is the
homology of B(M,Γ,N). This inherits a bigrading from the double chain complex structure in its definition.

Now where’s the spectral sequence in all of this?

1.3 The spectral sequence
There is sort of an evident filtration on the total complex that we constructed earlier: simply filter by the
external degree, let F0 be the total complex of M ⊗ N, F1 be the total complex of M ⊗ Γ̃ ⊗ N → M ⊗ N, etc.
And, well, where there is a filtration, there is a spectral sequence:
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Definition Let Γ be a monoid in Chk, M and N be right and left Γ modules, respectively. The algebraic
bar spectral sequence is the spectral sequence associated to the above filtration of the total complex of
B(M, Γ̃,N), converging to TorΓ(M,N).

To make this spectral sequence useful, we now identify the E2 page:

Theorem 1.9. The algebraic spectral sequence associated to TorΓ(M,N) has E2
i j � TorH(Γ)

i j (H(M),H(N)).

Proof. The E1 page we can see is given by

E1
i j � H j(F i/F i−1) � H j(M ⊗Γ Pi)

Equivalently, we have
E1

i,• � H(M) ⊗H(Γ) H(Pi)

Which gives us the desired E2 term, as this is precisely describing the terms of the bar construction B(H(M),H(Γ),H(N)).
�

Theorem 1.10 (The Bar Spectral Sequence). Let T ∈ TopAssMon. Then there is a spectral sequence with
E2 � TorH(T ;k)(k, k) converging to H∗(BT ; k).

Proof. Having already constructed the algebraic spectral sequence, we need only connect the homologi-
cal algebra and the topology with the observation that C∗(BT ) � B(k,H(T ; k), k). This follows from our
simplicial construction of BT . �

1.4 Applications
In this section we denote by Λk(t) the exterior algebra over the field k on an element t, and by Γk[t] the
divided polynomial algebra over k on an element t.

Theorem 1.11. Let X be an associative monoid, with H∗(X) � Λk(t). Then H∗(X) � k[u].

Proof. We calculate TorΛk[t](k, k) where t of degree m. Calculating the terms in the bar construction is fairly
straightforward, as Γ̃ is one dimensional, concentrated in degree m. Overall, the complex looks like:

2m 0 0 [t|t]

m 0 [t] 0

0 [] 0 0

0 1 2
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The differentials are all trivial for degree reasons, so this becomes the E2 page for our spectral sequence. Note
also that for degree reasons, all future differentials are trivial, so this gives us the E∞ page. The coalgebra
structure here is that of the divided polynomial ring (this divided polynomial structure traces its way back to
the bar construction having terms which themselves are summations of many terms), so H∗(BX) � Γk[s] for
s in degree m + 1. We get that H∗(BX) is simply the dual of this, as all elements lie in even dimensions. The
dual is precisely k[s], as desired. �

The knowledge of how a delooping of a space must behave relative to the original space gives us a useful
tool for determining that a space cannot possess a delooping, and therefore places bounds on the amount of
algebraic structure a space can support:

Corollary 1.12. S 7 admits no associative multiplication.

Proof. Suppose to the contrary that S 7 admits an associative multiplication; then we can deloop it to get the
classifying space B(S 7). Note that H∗(S 7;C3) = ΛC3 [x7], the exterior algebra on a generator in dimension
7. By the previous theorem, H∗(B(S 7);C3) = C3[u8], a polynomial algebra on a generator in dimension
8. Applying the power operations in mod P cohomology, P = 3, we have that P4(u8) = u3

8 , 0, but also
P4(u8) = P1P3(u8) = 0 (for degree reasons). Thus the delooping cannot exist. �

1.5 Group Completions
We noted earlier that the bar constructions applied to spaces T which could not be delooped because

π0(T ) was not a group. How are we in this case to interpret the bar construction B(∗,T, ∗)? It turns out that
in this case, the bar construction provides a group completion of T : recall that for a discrete monoid M, a
group completion of M is a group A along with a map of monoids M → A which is initial among maps from
M to a group. More succinctly, the group completion functor Mon→ Grp is the left adjoint of the inclusion
functor Grp → Mon. For a topological monoid, we could define group completion similarly, but because
inverses may exist only up to homotopy, formulating the universal property is more difficult and requires
∞-categories. A homological definition has been given:

Definition Let T ∈ TopAssMon. A map T → G is called a group completion if on homology it exhibits the
ring localization map

H∗(T )→ H∗(T )[π0(T )−1] � H∗(G)

A theorem of McDuff and Segal says that the map M → ΩBM is a group completion (see [2] for an
exposition).

One of the ways in which group completions arise while studying loop spaces is that it is often more
natural or easier to define monoidal structures than grouplike monoidal structures. For instance, the theory
of operads can be used to define monoidal structures, but lacks the ability to define groups - there is no
operad such that groups are precisely algebras over that operad. But, via group completion, we can pass
from algebras over operads to loop spaces:

Theorem 1.13. Denote by FEk the free Ek-algebra functor, where Ek is the little cubes operad. Then there
is a natural transformation FEk → ΩnΣn such that for all X, FEk X → ΩnΣnX is a group completion.

Furthermore, this commutes with the inclusions Ek → Ek+1 and ΩnΣn → Ωn+1Σn+1. If we take the
particular example X = S 0, and use the fact that FEk �

∐
i Conf(i,Rk), the unordered configuration space of

i points in Rn, we get a diagram
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∐
i Conf(i,R) Ω1S 1

∐
i Conf(i,R2) Ω2S 2

...
...

∐
i Conf(i,R∞) Ω∞S∞

The horizontal arrows are group completions. The first row is actually (up to homotopy equivalence) the
group completion N → Z. The second and final rows we can also give explicit descriptions for: Conf(i,R2)
is actually a classifying space for the ith braid group, so the left element in the second row is the disjoint
union of classifying spaces of braid groups Bri. The monoidal structure comes from the operation of placing
a braid with k strands next to a braid with ` strands, which gives a map Brk × Br` → Brk+`. Note that this
space is what is referred to as a 1-type: π0 and π1 are its only nonzero homotopy groups, which follows
directly from the fact that BBri is a K(Bri, 1). By contrast, Ω2S 2 has no trivial homotopy groups, so in this
case the group completion drastically alters the homotopy type of the space. This row also offers up some
insight on the homotopy groups of S 2: in particular,the map on π1 is surjective, and the Hopf fibration is
mapped to by an element which represents the twisting of a single strand around itself - a commutation
relation.4

The content of the last row generally goes by the name of the Barratt-Priddy-Quillen Theorem. The
space Conf(i,R∞) is a classifying space for Σi, the ith symmetric group, so the left space is in some sense an
entirely combinatorial object (here the monoidal structure comes from the inclusion Σk × Σ` → Σk+`). The
right space has as homotopy groups the stable homotopy groups of spheres. One rather highbrow way in
which this is stated is:

Theorem 1.14 (Barratt-Priddy-Quillen). The K-theory5 of finite sets is the sphere spectrum. In particular,

Ki(FinSets) � πi(S)
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