
The EHP Spectral Sequence
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In a first look at spectral sequences, one generally restricts to studying homology and cohomology groups
of a space X with an associate filtration. However, within the general machinery, there is in nothing that
particularly demands that we study the homology groups Hn(Xi), rather than the homotopy groups πn(Xi).1

For pairs (Xi, Xi−1) we have a sequence

· · · → πn(Xi, Xi−1)→ πn−1(Xi−1)→ πn−1(Xi)→ πn−1(Xi, Xi − 1)→ · · ·

Furthermore, given a filtration
⋃

Xi � X, we also have that colimiπn(Xi) � πn(X). Therefore, the arguments
presented in Hatcher or in the accompanying genera machinery notes apply: we have a spectral sequence
which starts with πn(Xi+1, Xi) and converges to the homotopy groups of X. Unfortunately, in contrast with the
homological situation, relative homotopy groups are not easily computed. However, if we suppose that the
map Xi → Xi+1 is a fibration with fiber Fi, then we can connect the long exact sequence of the pair (Xi+1, Xi)
with the long exact sequence of the fibration Fi → Xi → Xi+1 and derive that πn(Xi+1, Xi) � πn−1(Fi).
This insight will be key to constructing the EHP spectral sequence. Before doing so, we will say a little
more informally and formally about the general machinery. The following section is my own attempt at
unifying several phenomena, and requires some knowledge of abstract homotopy theory. It is not necessary
to understand anything else in this note, and so can be skipped by a reader without this background.

1 The homological spectral sequence as a special case of the homo-
topical

In the first section, we constructed an exact couple whose terms were Hn(Xi) and Hn(Xi, Xi−1). Recall
that these relative homology groups are equivalently the homology groups of the cofiber of the inclusions
ιi : Xi−1 → Xi. These assemble into the diagram

· · · Xi−1 Xi Xi+1 · · ·

Cof(ιi−1) Cof(ιi) Cof(ιi+1)

ιi−1 ιi ιi+1 ιi+2

Now, for any space Y , one way of viewing the homology groups Hn(Y) is as the homotopy groups of the space
πn(Z[Y]), where Z[Y] denotes the free topological abelian group on Y if by “space” we mean “topological
space,” and denotes the free simplicial abelian group on Y if we instead mean “simplicial set.” The latter is
better behaved, so this is what we will work with. Now, the functor Z[−] preserves cofibre sequences, and
therefore

Z[Xi−1] Z[Xi] Z[Cof(ιi−1)]
Z[ιi]

is a cofibre sequence. The category of simplicial abelian groups has the extremely useful property of being
stable, and in particular all cofibre sequences are also fibre sequences. It then follows that we have fibre
sequences

1Other than the fact that computing homotopy groups is a generally futile endeavor.
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ΩZ[Cof(ιi−1)] Z[Xi−1] Z[Xi]
Z[ιi]

And we can assemble these into the diagram

ΩZ[Cof(ιi)] ΩZ[Cof(ιi+1)] ΩZ[Cof(ιi+2)]

· · · Z[Xi−1] Z[Xi] Z[Xi+1] · · ·
Z[ιi−1] Z[ιi] Z[ιi+1] Z[ιi+2]

Now, the long exact sequence of homotopy groups of a fibration yield the long exact sequences

· · · → πn(ΩZ[Cof(ιi)])→ πn(Z[Xi−1])→ πn(Z[Xi])→ πn−1(ΩZ[Cof(ιi)])→ · · ·

These assemble into an exact couple, which we call the homotopical exact couple of the filtration. From
this we can repeat the same analysis as in the previous section and derive a spectral sequence. In fact, we
would derive the exact same spectral sequence as before. In this context, the main theorem is this:

Theorem 1.1. Let X be a space with a filtration • ⊂ X0 ⊂ · · · ⊂ X, such that the homotopical exact couple
satisfies (1). Then there is a spectral sequence with E1

n,i = πn(Fib(ιi)) and E∞n,i ⇒ πn(X). The differentials dr

have degree (−1,−1 − r).

From this point of view, the homology spectral sequence is a special case of this homotopy spectral
sequence. Although we won’t discuss details, there is a cohomology spectral sequence, which is dual to to
the homotopy spectral sequence, not a special case (except by duality, i.e. in the same way cofibre sequences
are fibre sequences in the opposite category).

2 Constructing the EHP sequence
The EHP sequence is the homotopical spectral sequence associated to the filtration

S 0 → ΩS 1 → Ω2S 2 → Ω3S 3 → Ω4S 4 → · · · → Ω∞S∞

Where Ω∞S∞ is defined to be the colimit of the ΩnS n. The maps of the filtration are the n-fold looping of the
unit maps S n → ΩS n+1. The maps ΩnS n → Ωn+1S n+1 are not fibrations, but this is little matter: we can take
their homotopy fibre, denoted An, which will have the same property of fitting into a long exact sequence of
homotopy groups as though we had a fibration An → ΩnS n → Ωn+1S n+1. Then we have a spectral sequence
with Ei,n

1 � πi(An), and converging to πi(Ω∞S∞). Of course, all of this is little use if we cannot identify what
An is. This is the subject of the next section.

2.1 Identifying the fibre
We wish to find An in the fibre sequence An → ΩnS n → Ωn+1S n+1. We will use two facts to adjust slightly
our goal: firstly, that if A → B → C is a fibre sequence, so is ΩC → A → B. In particular, if we have
that ΩnS n → Ωn+1S n+1 → C is a fibre sequence, so is ΩC → ΩnS n → Ωn+1S n+1, so for An we can take
ΩC. Secondly, that Ω preserves fibre sequences. Because of this, it suffices to find a space C and a map
ΩS n+1 → C with homotopy fibre S n; applying these two facts will then tell us that Ωn+1C � An. So we seek
such a space C and such a map.
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To any connected topological space X with chosen basepoint e, there is a construction JX called the
James Construction of X. To construct it, we construct a sequence

JiX =
Xi

(x1, · · · , xa, e, · · · , xi) ∼ (x1, · · · , e, xa, · · · , xi)

We think of JiX as being i-fold products of points of X, modulo the relation that the basepoint e commutes
with everything. Each JiX includes into Ji+1X by appending an e to an i-tuple to get an (i + 1)-tuple; if we
think of concatenation as multiplication, then this expresses that e is the identity. We then let

JX := colim
(

J1X → J2X → J3X → · · ·
)

We denote points in JX by finite strings of points in X, eg x1x2x3 denotes the point (x1, x2, x3, e, e, ...). JX is
a topological monoid by the map which concatenates strings. Its identity is (e, e, ...). JX will be useful for
us because of the following fact:

Theorem 2.1. Let X be connected. Then JX is homotopy equivalent to ΩΣX.

For a proof, see [2]. The essential idea is that JX is the free associative monoid on the space X, while
ΩΣX is the free grouplike “associative-up-to-coherent-homotopy” monoid on the space X.2 It turns out that
the associative/associative-up-to-coherent-homotopy distinction is not relevant (see maru), and that any con-
nected monoid is grouplike, so these coincide when X is connected.

As JX has a rather combinatorial description, this equivalence gives a surprisingly easy way to ana-
lyze a loop space. For instance, if we take X to be the sphere S n, then we have that JkS n is obtained by
gluing a single kn-cell to Jk−1S n. From this we immediately obtain the following for n ≥ 2:

Hi(ΩS n+1) � Hi(JS n) �

Z if i|n
0 otherwise

Applying the universal coefficient theorem, we obtain the same result on cohomology. In fact, we can say
somewhat more, and calculate the multiplicative structures involved here:

Theorem 2.2. For n even, H∗(ΩS n+1) � Γ[x] for x in degree n. For n odd, H∗(ΩS n+1) � H∗(S n) ⊗
H∗(ΩS 2n+1).

Proof. We inspect the cohomological Serre spectral sequence for the fibration ΩS n+1 → PS n+1 → S n+1.
The E2 page will have terms Hp(S n+1; Hq(ΩS n+1)); in other words it will have H∗(ΩS n+1) in rows 0 and
n + 1.= In order for the E∞ page to end up at 0, we must have everything get killed by differentials. In
particular, some differential must hit the element a which generates Hn+1(S n+1,H0(ΩS n+1)) � Z. For degree
reasons, the only possible way for this to happen is if there is an element x1 ∈ H0(S 2n−1; Hn(ΩS n+1)), and
furthermore that x1 freely generates this group. Of course, this lets us know about an additional group:
Hn+1(S n+1; Hn(ΩS n+1)), generated by a ^ x1. So likewise, there must be some element x2 which hits
this, and then we know there is an element a ^ x3... so inductively we recover what we noted above, that
Hi(ΩS n+1) � Z when i divides n, and is 0 otherwise.

In addressing the multiplicative structure, we split into cases: first, suppose that n is even. Then we have
that dn(xk

1) = k(a ^ xk−1
1 ), and we already know (by definition, essentially) that dn(xk) = a ^ xk−1. If we let

k = 2, we have that dn(x2
1) = 2(a ^ x1), whereas dn(x2) = a ^ x1, and so we derive x2

1 = 2x2. Inducting,
we derive that in general, xk

1 = k!xk, so H∗(ΩS n+1) is a divided power ring as we claimed. �

2By “grouplike” we mean that π0 is a group; see the the author’s writeup on the bar spectral sequence for more detail. By
“associative-up-to-coherent-homotopy” we mean an A∞-algebra, see [1].
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Consider J2S n. It has a subspace J1S n � S n, and the quotient J2S n/J1S n is a sphere S 2n. We denote this
quotient map with an overline, writing x1x2 7→ x1x2. Composing this with the inclusion S 2i � J1S 2i ↪→ JS 2i

yields a map J2S i → JS 2i. We extend this to a map f : JS i → JS 2i by

f (x1x2 · · · xn) =
∏

1≤i< j≤n

xix j

Note that this induces an isomorphism on H2n, so determines the map on the homology ring. Denote by Fn

the homotopy fibre of this map, so that we have a fibre sequence Fn → JS n → JS 2n. Equivalently, we a
have a fiber sequence Fn → ΩS n+1 → ΩS 2n+1. If we can show that Fn � S n, we will have found the fiber
An that we were originally seeking. Note that by the LES in homotopy groups, we have that Hn(Fn) � Z. To
understand the overall homotopy type of this Fn, we consider the cohomological Serre spectral sequence for
this fibration: the E2 page looks as follows:

2n ? ? ? ? ?

... 0 0 0 0 0

n a0t a1t a2t a3t a4t

... 0 0 0 0 0

0 a0 a1 a2 a3 a4

0 2n 4n 6n 8n

Here we represent by ai the generator of H2ni(JS 2n,Z), and by t the generator of Hn(Fn) � Z. By putting a
group element in a spot on a spectral sequence diagram, we mean that that element generates the group there.
For instance, a3t generates E2

6n,n = H6n(S 2n,Hn(S n)). In this particular groups, these elements generate these
groups freely; that is, each group is isomorphic to Z.

How is it that we know about all those groups which are 0? Well, by (n − 1)-connectedness of the space
Fn, rows 1 through n − 1 vanish. We know that after termination of the spectral sequence, we will only
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have nonzero entries whose total degree is a multiple of n, because this is where the homology of JS n is
concentrated. This tells us that there can be no entries in rows n + 1 through 2n − 1, since the leftmost entry
in the lowest such row would survive to the end of the spectral sequence for degree reasons. Hence the first
possible nonzero entry is in row 2n.

In the case where n is odd, the elements shown represent all of the cohomology of JS n (the inclusions
of these groups are isomorphisms) and consequently they support no differentials. Since these support no
differentials, we have that there are actually no nonzero terms above these (as any such terms would survive
to the E∞ page), and hence Fn is a simply connected cohomology sphere, and hence homotopy equivalent
to a sphere, the homotopy equivalence being induced by the generator of πn(Fn) � Z

In the case that n is even, however, these rows do not represent all of the cohomology of JS n: in partic-
ular, the element a1t is sent to the product of the generators in dimension n and 2n of H∗(JS n). Due to the
divided power structure, this is three times a generator of this group, to reflect this filtration 〈at〉 ⊂ H3n(JS n)
which has subquotient Z/3Z, the first entry in row 3n is nonzero, equal to Z/3Z (all entries in rows n + 1
through 3n − 1 are zero). However, if we rerun the spectral sequence argument using rational homology
rather than singular homology, then there is no such problem and we obtain the result that Fn is a rational
cohomology sphere. Additionally, if we work with coefficients in Z/2Z, this divided power disappears and
we similarly get that An is a Z/2Z-cohomology sphere. From this we get that Fn is a 2-local cohomology
sphere, and hence 2-locally homotopy equivalent to a sphere (here we must also appeal to the fact that the
homotopy groups of Fn are finitely generated, which follows from finite generation of the homotopy groups
of spheres and that it appears in a fibration with them).3

At this point, our analysis has yield that we have a 2-local fibre sequence S n → ΩS n+1 → ΩS 2n+1.
We can take the n-fold looping of this to get a fibre sequence ΩnS n → Ωn+1S n+1 → Ωn+1S 2n+1. This tells
us that we have a fibre sequence Ωn+2S 2n+1 → ΩnS n → Ωn+1S n+1. The map ΩnS n → Ωn+1S n+1 is the one
occuring in the filtration of Ω∞S∞ (this can be determined by analyzing the effect on cohomology). Hence
the general method of constructing a spectral sequence from a filtration gives us the following:

Theorem 2.3. There is a 2-local spectral sequence with E1 page given by E1
n,i � πi(Ωn+2S 2n+1) � πi+n+2(S 2n+1)

converging to πi(Ω∞S∞).

We haven’t solved the overall problem of finding the homotopy groups of Fn, but finding them 2-locally
is a rich enough topic on its own that we will restrict our attention to it for the rest of this section.

CONVENTION ALERT: THE REMAINDER OF THIS DOCUMENT IS 2-LOCAL; THAT IS, ALL
STATEMENTS SHOULD BE INTERPRETED AS BEING TRUE ONLY AFTER LOCALIZATION

AT 2

3 Understanding the spectral sequence
The spectral sequence that we have just described is known as the EHP Sequence. At first glance, it’s a bit of
a silly construction: the input is the biggest open problem in homotopy theory, and the output is the second
biggest. So we can neither reason backwards nor forwards to “solve” this spectral sequence. However, it is
a very useful organizational method for dealing with some fascinating structure in the homotopy groups of

3For the reader unfamiliar with seeing “local” in the context of topological spaces: acquaint yourself with the word in the context of
abelian groups (or better yet, modules over a general commutative ring). A “2-local sphere” is a space X equipped with a map S k → X
which is an equivalence on all the 2-localized homotopy groups).
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spheres. To explain this, we first explain the name: the “E” stands for Einhangung, the German word for
“suspension,” and refers to the map ΩnS n → Ωn+1S n+1. The “H” stands for Hopf, and is motivated by the
following observation:

Theorem 3.1. The map π2n−1(S n)→ π2n−1(S 2n−1) is the Hopf invariant map, possibly up to a negative sign.

The proof is rather long and computational, so we simply reference [2]. Well, that’s the “H,” and we’ll
explore some implications in a bit. For now, let’s move onto the “P:” this stands for Product, and it is in
reference to the Whitehead Product. For completeness, we include a definition:

Definition For α ∈ πi(X) and β ∈ π j(X), the Whitehead product [α, β] is defined as follows: the space S i×S j

is the pushout of the following diagram:

S i+ j−1 Di+ j

S i ∨ S j

A

ι

And so we can define [α, β] to be the composition (α ∨ β) ◦ A.

Example As we calculated before, H∗(JS n) is a divided power algebra for n even. Hence J2S n � Z[x, x2/2]/(x3),
so the Hopf invariant of the attaching map of the 2n-cell of J2S n is ±2. This map is precisely [ιn, ιn]. On the
other hand, if n is odd, the generator in dimension n squares to 0 and so we obtain

H([ιn, ιn]) =

0 for n odd
±2 for n even

This is the classical definition of the Whitehead product, we state another formulation which we will not use
but feel is important to mention:

Theorem 3.2. Let X have the homotopy type of a CW complex. Consider the commutator map [−,−] :
ΩX × ΩX → ΩX given by (p, q) 7→ pqp−1q−1. The image of ΩX ∨ ΩX under this map is contractible, and
hence we have an induced map ΩX ∧ΩX → ΩX. Consider the composition

S i+ j S i ∧ S j ΩX ∧ΩX ΩX
α∧β asd f

This yields a map [−,−] : πi(ΩX)×π j(ΩX)→ πi+ j(ΩX), which is equivalent to the Whitehead bracket under
the identification πn(ΩX) � πn+1(X). Furthermore, this makes ΩX into a graded Lie algebra over Z.

The Lie algebra structure is the reason for the bracket notation, and because of this the product is also
referred to as the Whitehead bracket. But what does this have to do with our spectral sequence? Well, if we
write out the following exact fragment:

π2n+1(S 2n+1)→ π2n−1(S n)→ π2n(S n+1)→ 0

We claim the leftmost map has something to do with the Whitehead product. The middle map is an “E.” By
the equivalence between ΩΣX and JX that we discussed earlier, this is isomorphic to the diagram

π2n+1(S 2n+1)→ π2n−1(S n)→ π2n−1(JS n)→ 0
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where the middle map is induced by the inclusion S n → JS n. By homotopy excision, the kernel of this map
is generated by the attaching map of the 2n cell of JS n. This is exactly the Whitehead product [ιn, ιn]. By
exactness, the leftmost map sends a generator of π2n+1(S 2n+1) to [ιn, ιn], and this is the connection we were
seeking.

This last observation has particular significance for calculating the differentials along the diagonal: these
differentials (on the E1 page) are the composition H ◦ P, and so along the diagonal are given by the Hopf
invariant of [ιn, ιn]. In particular, as we noted in the example above, they alternate between 2 and 0. Further-
more, reviewing the definition of the spectral sequence of an exact couple, we obtain the following:

Theorem 3.3. The differential di with source π2n−1(S 2n−1) is 0 if i < ρ(n), where ρ(n) is the number of times
one can “desuspend” [ιn, ιn].

This number ρ(n) turns out to have some surprising geometric connections:

Theorem 3.4. The maximal number of linearly independent vector fields on S n (equivalently, the dimension
of the largest trivial summand of the tangent bundle of S n) is equal to ρ(n).

We defer this proof to a short appendix. As a consequence, the term π7(S 7) supports no differentials, just
for dimension reasons (since S 7 is parallelizable).

3.1 Calculating some stable (and unstable) homotopy groups
Now, we will try to gather together these facts and compute some stable homotopy groups: let us start with
the baseline knowledge that π2n−1(S 2n−1) � Z. This tells us that on the E1 page, we have

S 7 0 0 0 Z ?

S 5 0 0 Z ? ?

S 3 0 Z ? ? ?

S 1 Z 0 0 0 0

πs
0 πs

1 πs
2 πs

3 πs
4
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The differentials drawn alternate between 0 and 2, and so in particular we calculate that πs
0 � Z and πs

1 �
Z/2Z.4 But πn+1(S n) � Z/2Z in the stable range, so we get to fill in some of the E1 page to get:

S 7 0 0 0 Z Z/2Z

S 5 0 0 Z Z/2Z ?

S 3 0 Z Z/2Z ? ?

S 1 Z 0 0 0 0

πs
0 πs

1 πs
2 πs

3 πs
4

And now we can attempt to analyze the behaviour of the differentials. Denote by η3 the generator of π4(S 3);
we would like to prove that no differentials kill it. The differential on the E2 page, coming from ι7, cannot
hit it because S 7 is parallelizable. To analyze the other differential, we make use of the following identity:

Lemma 3.5. Let α and β be elements in the homotopy groups of spheres. Then

P(α ◦ E2β) = P(α) ◦ β

when these compositions are defined.

This is useful because if we let α = ι5 and β = η3 : S 4 → S 3, then we get that P(η5) = [ι2, ι2] ◦ η3, but η3
is order 2 and [ι2, ι2] is twice η2, so this is 0, hence the term η5 supports no differential. As a consequence,
we calculate that πs

2 � Z/2Z. Actually, we can observe by inspecting our LES that here we have early
stabilization in the homotopy groups of spheres: we have the following exact fragment

π7(S 4) π7(S 7) π5(S 3) π6(S 3) π6(S 7)H P E H

The last H is 0 for degree reasons, and the first H is surjective because of the Hopf invariant one map
ν : S 7 → S 4. It follows that π5(S 3) � π6(S 4) � πs

2. and we get in particular π5(S 3) � Z/2Z. Note that
similar logic tells us that in general, the only time early stabilization can occur in the homotopy groups of
spheres is when H is surjective, i.e. when there is a map of Hopf invariant one.

4Every other calculation is only valid 2-locally, but actually this holds integrally: for, the Hopf invariant of [ι2, ι2] is 2, and hence
2η = 0 stably where η is the Hopf fibration.
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At this point, we’ve deduced that the E1 page looks as follows:

S 7 0 0 0 Z Z/2Z

S 5 0 0 Z Z/2Z Z/2Z

S 3 0 Z Z/2Z Z/2Z ?

S 1 Z 0 0 0 0

πs
0 πs

1 πs
2 πs

3 πs
4

And that no non-diagonal elements support a differential in first 4 columns. To calculate πs
3, we will show

that no elements in the fifth column support a differential, except for the differential π9(S 9)→ π7(S 7) (which
is just outside of the portion of the page which we’ve included). We consider each of these elements in turn
(note that for degree reasons, we do not need to consider any differentials from the question mark at the
bottom right).,

The Z on the diagonal vanishes after the E1 page, since the d1 differential coming out of it is multiplica-
tion by two.

Next, the Z/2Z generated by Σ5η: for degree reasons, it suffices to show that d1 and d2 are 0, so we wish
to show that P(Σ6η) is a 2-fold suspension. Using the previous formula,

P(Σ5η) = P(ι7 ◦ Σ5η)

= P(ι7) ◦ Σ3η

Note that since ι7 supports no differentials, P(ι7)[= [ι3, ι3] is a 3-fold suspension. Since Σ(α ◦ β) = Σα ◦ Σβ,
the result then follows.

Finally, the Z/2Z generated by Σ3η2: for degree reasons, we need only show that d1 vanishes. Using
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again using our formula, we have

(H ◦ P)(Σ3η2) = H(P(Σ3η ◦ Σ4η))

= H(P(Σ3η) ◦ Σ2η)

= H(P(Σ3η)) ◦ Σ2η

= d1(Σ3η) ◦ Σ2η

= 0 ◦ Σ2η = 0

So we find that all three Z/2Z terms in the πs
3 column survive, so we have a filtration

0 � π4(S 1)→ π5(S 2)→ π6(S 3)→ π7(S 4)→ π8(S 5)→ πs
3

Where the subquotients of the images of the terms in the final term πs
3 are Z/2Z. This means that πs

3 is either
Z/8Z, Z/2Z × Z/4Z, or (Z/2Z)3. Reconstructing the fact that it is in fact Z/8Z requires a surprising amount
of additional work that we will not do here.

4 Further Directions
While our focus has been on constructing and analyzing this particular spectral sequence, it is worth saying
some words on closely related topics. We present no proofs for the following observations; some are un-
complicated but some are deep and difficult. Most of them are known to the author through [4]. First of all,
if we are interested not in computing the stable homotopy groups of spheres, but rather the homotopy groups
of S n, we can consider the filtration

S 0 → Ω1S 1 → · · · → ΩnS n → ΩnS n → · · ·

and we will obtain a spectral sequence which is trivial above the nth row, converging to the homotopy groups
of S n. This is a sort of “truncated EHP Sequence.”

There is a glaring deficiency of our analysis: it is entirely blind to odd primes! Fortunately, there is
similar analysis that we can do - for an odd prime p, Toda constructed some more intricate p-local fibre
sequences

Ŝ 2m → JS 2m → JS 2mp and S 2m−1 → ΩŜ 2m → JS 2pm−2

where p is an odd prime. Here Ŝ 2m denotes the (2mp − 1)-skeleton of JS 2m. Gluing these together yield
arrays of spectral sequences which converge to π•(S n) for n odd, and π•(Ŝ n) for n even.

Another interesting related tidbit is the following: by viewing S n as the one point compactifiation of
Rn, we have an action of O(n) on S n - in other words, a map O(n) → ΩnS n. This is compatible with the
inclusion O(n) → O(n + 1). Furthermore, this inclusion is the fiber of a map O(n + 1) → S n+1. Fitting this
together, there is a commutative diagram

O(n) O(n + 1) S n

ΩnS n Ωn+1S n+1 Ωn+1S 2n+1
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Where the rows fibre sequences. The top row has its own spectral sequence, converging to the homotopy
groups of O, the colimit of the O(n). The vertical maps induce a map of spectral sequences, which is
compatible with the J homorphism O → Ω∞S∞. This is related to our two equivalent descriptions of ρ(n)
(the construction of the fibre sequence is a key element of our proof of their equivalence). It turns out that
we can further enlarge this to include another row

O(n) O(n + 1) S n

ΩnS n Ωn+1S n+1 Ωn+1S 2n+1

Ω∞Σ∞RPn−1 Ω∞Σ∞RPn Ω∞Σ∞S n

And this bottom row, which gives rise to a spectral sequence converging to the stable homotopy groups of
RP∞, also turns out to correspond to another description of ρ:

Theorem 4.1. ρ(n) is the largest integer such that the stabilization of the map RPn/RPn−ρ(n) → S n (defined
by collapsing all but the top-dimensional cell) admits a cross section.
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5 Appendix: Vector Fields on Spheres
We prove here the statement that the maximal dimension of a trivial subbundle of S n is equal to the number
of times that [ιn, ιn] can be desuspended.

Recall that to give an n-dimensional vector bundle on a space X, it suffices to find an open coverU of X
such that each U ∈ U is contractible, and provide functions τUV : U∩V → GL(n) such that τVW◦τUV = τUW .
Furthermore, the vector bundle depends (up to isomorphism) only on the homotopy classes of the τUV . In
particular, to give a vector bundle on the n-sphere, we consider the open cover by S n \{N} and S n \{S }, where
N and S are the North and South poles. The intersection of these two open sets is homotopy equivalent to a
S n−1; hence giving a vector bundle on S n is equivalent to giving an element πn−1(GLn). Denote the element
corresponding to TS n by νn. We can (somewhat) explicitly provide a description of νn:

Lemma 5.1. J(νn) = ±[ιn, ιn].

I couldn’t figure out a better proof of this than the original, so the reader interested in the proof should
see it at [3]. With this in hand, we can prove our desired result:

Proof of Theorem 3.7. By the above, there exists an n-dimensional trivial subbundle of TS n iff νn is in the
image of the inclusion πn−1(S O(n − r))→ πn−1(S O(n)). Looking at the commutative diagram:

πn−1(S O(n − r)) πn−1(S O(n))

πn−1Ωn−rS n−r πn−1ΩnS n

We see that if νn is in the image of the top horizontal map, then [ιn, ιn] is in the image of the bottom horizontal
map. For the other direction: there is a generalized Hopf invariant πn−1ΩnS n → πn−1(S O(n), S O(n − r))
which is 0 exactly on r-fold suspensions. Hence if [ιn, ιn] is an r-fold suspension, νn is sent to zero in the
composition

πn−1S O(n)→ πn−1ΩnS n → πn−1(S O(n), S O(n − r))

This composition is equal to the map occuring in the LES of the pair (S O(n), S O(n − r)) and therefore this
implies νn is in the image of πn−1S O(n − r) as desired. �
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