Introduction

Have this equivalence for compact, Hausdorff spaces X :

Introduction

Have this equivalence for compact, Hausdorff spaces X :

Introduction

Have this equivalence for compact, Hausdorff spaces X :

Goal for right now: show the first map is an equivalence.

Introduction

Have this equivalence for compact, Hausdorff spaces X :

Goal for right now: show the first map is an equivalence. Warning - I'm going to be a little vague!

Introduction

Have this equivalence for compact, Hausdorff spaces X :

Goal for right now: show the first map is an equivalence. Warning - I'm going to be a little vague!

Introduction

Have this equivalence for compact, Hausdorff spaces X :

Goal for right now: show the first map is an equivalence. Warning - I'm going to be a little vague!

Bundles and Local Sections

Given a vector bundle $p: E \rightarrow X$, we can take local sections on any open subset $U \subset X$. These form a module over the ring of functions $C(U)$.

Bundles and Local Sections

Given a vector bundle $p: E \rightarrow X$, we can take local sections on any open subset $U \subset X$. These form a module over the ring of functions $C(U)$.

Question: given some suitable data of "modules over (some) of the rings $C(U)$," can we construct a corresponding vector bundle?

Bundles and Local Sections

Given a vector bundle $p: E \rightarrow X$, we can take local sections on any open subset $U \subset X$. These form a module over the ring of functions $C(U)$.

Question: given some suitable data of "modules over (some) of the rings $C(U)$," can we construct a corresponding vector bundle?

Starting point: given a finitely generated, free module over $C(X)$, it is the global sections of a trivial bundle.

What's a Vector Bundle?

A vector bundle over a space X is an open cover $\left\{U_{i}\right\}$ and transition homeomorphisms $f_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \times \mathbb{R}^{n} \rightarrow U_{\alpha} \cap U_{\beta} \times \mathbb{R}^{n}$ (which are over X, linear on fibers, and satisfy a cocyle condition over $\left.U_{\alpha} \cap U_{\beta} \cap U_{\gamma}\right)$.

What's a Vector Bundle?

A vector bundle over a space X is an open cover $\left\{U_{i}\right\}$ and transition homeomorphisms $f_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \times \mathbb{R}^{n} \rightarrow U_{\alpha} \cap U_{\beta} \times \mathbb{R}^{n}$ (which are over X, linear on fibers, and satisfy a cocyle condition over $\left.U_{\alpha} \cap U_{\beta} \cap U_{\gamma}\right)$. We encapsulate this in a diagram that looks like this:

$$
U_{\alpha} \times \mathbb{R}^{n}
$$

$$
U_{\beta} \times \mathbb{R}^{n}
$$

What's a Map Between Vector Bundles?

Suppose that we are presented with two vector bundles trivial over the same cover $\left\{U_{i}\right\}$, with transition functions $\left\{f_{\alpha \beta}\right\}$ and $\left\{g_{\alpha \beta}\right\}$.

What's a Map Between Vector Bundles?

Suppose that we are presented with two vector bundles trivial over the same cover $\left\{U_{i}\right\}$, with transition functions $\left\{f_{\alpha \beta}\right\}$ and $\left\{g_{\alpha \beta}\right\}$. Then a map between them is a set of maps $\left\{\psi_{i}: U_{i} \times \mathbb{R}^{n} \rightarrow U_{i} \times \mathbb{R}^{n}\right\}$ such that each map is over X, and linear on fibers, and such that the following commutes $\forall \alpha, \beta$:

What's a Vector Bundle? pt. II

Trivial vector bundles correspond to free modules of sections.

What's a Vector Bundle? pt. II

Trivial vector bundles correspond to free modules of sections. The ${\underset{\tilde{f}}{ }}_{\text {transition data }} f_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G L_{n}(\mathbb{R})$ is equivalent to a function $\tilde{f}_{\alpha \beta} \in G L_{n}\left(C\left(U_{\alpha} \cap U_{\beta}\right)\right)$.

What's a Vector Bundle? pt. II

Trivial vector bundles correspond to free modules of sections. The transition data $f_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G L_{n}(\mathbb{R})$ is equivalent to a function $\tilde{f}_{\alpha \beta} \in G L_{n}\left(C\left(U_{\alpha} \cap U_{\beta}\right)\right)$. So, an 'algebraically presented' vector bundle is an open cover $\left\{U_{i}\right\}$ (over which the module of sections is free) and transition maps $\tilde{f}_{\alpha \beta} \in G L_{n}\left(C\left(U_{\alpha} \cap U_{\beta}\right)\right)$.

What's a Vector Bundle? pt. II

Trivial vector bundles correspond to free modules of sections. The transition data $f_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G L_{n}(\mathbb{R})$ is equivalent to a function $\tilde{f}_{\alpha \beta} \in G L_{n}\left(C\left(U_{\alpha} \cap U_{\beta}\right)\right)$. So, an 'algebraically presented' vector bundle is an open cover $\left\{U_{i}\right\}$ (over which the module of sections is free) and transition maps $\tilde{f}_{\alpha \beta} \in G L_{n}\left(C\left(U_{\alpha} \cap U_{\beta}\right)\right)$.

$$
C\left(U_{\alpha}\right)^{\oplus n}
$$

What's a Vector Bundle? pt. II

Trivial vector bundles correspond to free modules of sections. The transition data $f_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G L_{n}(\mathbb{R})$ is equivalent to a function $\tilde{f}_{\alpha \beta} \in G L_{n}\left(C\left(U_{\alpha} \cap U_{\beta}\right)\right)$. So, an 'algebraically presented' vector bundle is an open cover $\left\{U_{i}\right\}$ (over which the module of sections is free) and transition maps $\tilde{f}_{\alpha \beta} \in G L_{n}\left(C\left(U_{\alpha} \cap U_{\beta}\right)\right)$.

$$
C\left(U_{\alpha}\right)^{\oplus n}
$$

The maps r are induced by restriction maps $C(U) \rightarrow C(V)$ for $V \subseteq U$.

What's a Vector Bundle? pt. II

Trivial vector bundles correspond to free modules of sections. The transition data $f_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G L_{n}(\mathbb{R})$ is equivalent to a function $\tilde{f}_{\alpha \beta} \in G L_{n}\left(C\left(U_{\alpha} \cap U_{\beta}\right)\right)$. So, an 'algebraically presented' vector bundle is an open cover $\left\{U_{i}\right\}$ (over which the module of sections is free) and transition maps $\tilde{f}_{\alpha \beta} \in G L_{n}\left(C\left(U_{\alpha} \cap U_{\beta}\right)\right)$.

$$
C\left(U_{\alpha}\right)^{\oplus n}
$$

The maps r are induced by restriction maps $C(U) \rightarrow C(V)$ for $V \subseteq U$.

The cocycle condition $\tilde{f}_{\beta \gamma} \tilde{f}_{\alpha \beta}=\tilde{f}_{\alpha \gamma}$ makes sense viewing them all as elements of $G L_{n}\left(C\left(U_{\alpha} \cap U_{\beta} \cap U_{\gamma}\right)\right)$.

What's a Map Between Vector Bundles? pt. II

Building on our previous idea of what a map between (geometric) vector bundles is, a map between 'algebraically presented' vector bundles is a big commutative diagram something like:

What's a Map Between Vector Bundles? pt. II

Building on our previous idea of what a map between (geometric) vector bundles is, a map between 'algebraically presented' vector bundles is a big commutative diagram something like:

Note: the maps marked r are not surjective, but their image is a generating set (for the same reason $C\left(U_{\alpha}\right) \rightarrow C\left(U_{\alpha} \cap U_{\beta}\right)$ is not surjective, but its image contains 1).

Example

Consider the usual cover of the circle by $S^{1} \backslash\{0\}$ and $S^{1} \backslash\{\pi\}$.

Example

Consider the usual cover of the circle by $S^{1} \backslash\{0\}$ and $S^{1} \backslash\{\pi\}$. To give a line bundle on S^{1} is to give a module map $f_{12}: C\left(S^{1} \backslash\{0, \pi\}\right)^{\oplus 1} \rightarrow C\left(S^{1} \backslash\{0, \pi\}\right)^{\oplus 1}$.

Example

Consider the usual cover of the circle by $S^{1} \backslash\{0\}$ and $S^{1} \backslash\{\pi\}$. To give a line bundle on S^{1} is to give a module map
$f_{12}: C\left(S^{1} \backslash\{0, \pi\}\right)^{\oplus 1} \rightarrow C\left(S^{1} \backslash\{0, \pi\}\right)^{\oplus 1}$. Equivalently, it is a choice of generator for the module, which is any nowhere zero function.

Example

Consider the usual cover of the circle by $S^{1} \backslash\{0\}$ and $S^{1} \backslash\{\pi\}$. To give a line bundle on S^{1} is to give a module map $f_{12}: C\left(S^{1} \backslash\{0, \pi\}\right)^{\oplus 1} \rightarrow C\left(S^{1} \backslash\{0, \pi\}\right)^{\oplus 1}$. Equivalently, it is a choice of generator for the module, which is any nowhere zero function.

The trivial line bundle is obtained by functions which are everywhere positive or everywhere negative, and the Mobius bundle by picking a function which has opposite sides on the two connected components.

...why though?

One big advantage to this: easily describes vector bundles compatible with additional structure.

...why though?

One big advantage to this: easily describes vector bundles compatible with additional structure.

- Replace $C(U)$ with $C^{\infty}(U)$ (smooth functions) - get smooth vector bundles.

...why though?

One big advantage to this: easily describes vector bundles compatible with additional structure.

- Replace $C(U)$ with $C^{\infty}(U)$ (smooth functions) - get smooth vector bundles.
- Replace $C(U)$ with $\mathcal{O}^{H}(U)$ (holomorphic functions) - get holomorphic vector bundles.

...why though?

One big advantage to this: easily describes vector bundles compatible with additional structure.

- Replace $C(U)$ with $C^{\infty}(U)$ (smooth functions) - get smooth vector bundles.
- Replace $C(U)$ with $\mathcal{O}^{H}(U)$ (holomorphic functions) - get holomorphic vector bundles.
- Replace $C(U)$ with $\mathcal{O}^{A}(U)$ (algebraic functions) - get "algebraic vector bundles."

Better Example

Consider $\mathbb{C P}^{1}=\mathbb{C} \cup\{\infty\}$.

Better Example

Consider $\mathbb{C P}^{1}=\mathbb{C} \cup\{\infty\}$. Algebraic functions on an open subset $U \subseteq \mathbb{C P}^{1}$ are rational functions with no poles in U.

Better Example

Consider $\mathbb{C P}^{1}=\mathbb{C} \cup\{\infty\}$. Algebraic functions on an open subset $U \subseteq \mathbb{C P}^{1}$ are rational functions with no poles in U.

First, assume algebraic vector bundles on \mathbb{C} are trivial.

Better Example

Consider $\mathbb{C P}^{1}=\mathbb{C} \cup\{\infty\}$. Algebraic functions on an open subset $U \subseteq \mathbb{C P}^{1}$ are rational functions with no poles in U.

First, assume algebraic vector bundles on \mathbb{C} are trivial.

$$
\text { Let } U_{1}=\mathbb{C P}^{1} \backslash\{\infty\} \text { and } U_{2}=\mathbb{C P}^{1} \backslash\{0\}
$$

Better Example

Consider $\mathbb{C P}^{1}=\mathbb{C} \cup\{\infty\}$. Algebraic functions on an open subset $U \subseteq \mathbb{C P}^{1}$ are rational functions with no poles in U.

First, assume algebraic vector bundles on \mathbb{C} are trivial.
Let $U_{1}=\mathbb{C P}^{1} \backslash\{\infty\}$ and $U_{2}=\mathbb{C P}^{1} \backslash\{0\}$. Algebraic functions on $U_{1} \cap U_{2}=\mathbb{C}\left[x, x^{-1}\right]$.

Better Example

Consider $\mathbb{C P}^{1}=\mathbb{C} \cup\{\infty\}$. Algebraic functions on an open subset $U \subseteq \mathbb{C P}^{1}$ are rational functions with no poles in U.

First, assume algebraic vector bundles on \mathbb{C} are trivial.
Let $U_{1}=\mathbb{C P}^{1} \backslash\{\infty\}$ and $U_{2}=\mathbb{C P}^{1} \backslash\{0\}$. Algebraic functions on $U_{1} \cap U_{2}=\mathbb{C}\left[x, x^{-1}\right]$. So an algebraic line bundle on $\mathbb{C P}^{1}$ is given by a module automorphism of $\mathbb{C}\left[x, x^{-1}\right]$, which amounts to a choice of n for $x \mapsto x^{n}\left(x \mapsto \lambda x^{n}\right.$ for $\lambda \in \mathbb{C}$ gives the same bundle for any λ).

Better Example

Consider $\mathbb{C P}^{1}=\mathbb{C} \cup\{\infty\}$. Algebraic functions on an open subset $U \subseteq \mathbb{C P}^{1}$ are rational functions with no poles in U.

First, assume algebraic vector bundles on \mathbb{C} are trivial.
Let $U_{1}=\mathbb{C P}^{1} \backslash\{\infty\}$ and $U_{2}=\mathbb{C P}^{1} \backslash\{0\}$. Algebraic functions on $U_{1} \cap U_{2}=\mathbb{C}\left[x, x^{-1}\right]$. So an algebraic line bundle on $\mathbb{C P}^{1}$ is given by a module automorphism of $\mathbb{C}\left[x, x^{-1}\right]$, which amounts to a choice of n for $x \mapsto x^{n}\left(x \mapsto \lambda x^{n}\right.$ for $\lambda \in \mathbb{C}$ gives the same bundle for any λ). This gives us a surjective map
$\mathbb{Z} \rightarrow\left\{\right.$ line bundles on $\left.\mathbb{C P}^{1}\right\}$.

Better Example

Consider $\mathbb{C P}^{1}=\mathbb{C} \cup\{\infty\}$. Algebraic functions on an open subset $U \subseteq \mathbb{C P}^{1}$ are rational functions with no poles in U.

First, assume algebraic vector bundles on \mathbb{C} are trivial.
Let $U_{1}=\mathbb{C P}^{1} \backslash\{\infty\}$ and $U_{2}=\mathbb{C P}^{1} \backslash\{0\}$. Algebraic functions on $U_{1} \cap U_{2}=\mathbb{C}\left[x, x^{-1}\right]$. So an algebraic line bundle on $\mathbb{C P}^{1}$ is given by a module automorphism of $\mathbb{C}\left[x, x^{-1}\right]$, which amounts to a choice of n for $x \mapsto x^{n}\left(x \mapsto \lambda x^{n}\right.$ for $\lambda \in \mathbb{C}$ gives the same bundle for any λ). This gives us a surjective map
$\mathbb{Z} \rightarrow\left\{\right.$ line bundles on $\left.\mathbb{C P}^{1}\right\}$.
(Unimportant aside: this map is injective, and a group homomorphism).

Serre's Theorem

Uh-oh: $\mathcal{O}^{A}\left(\mathbb{C P}^{1}\right)=\mathbb{C}$.

Serre's Theorem

Uh-oh: $\mathcal{O}^{A}\left(\mathbb{C P} \mathbb{P}^{1}\right)=\mathbb{C}$. Projective modules over $\mathbb{C}=$ complex vector spaces.

Serre's Theorem

Uh-oh: $\mathcal{O}^{A}\left(\mathbb{C P}^{1}\right)=\mathbb{C}$. Projective modules over $\mathbb{C}=$ complex vector spaces.

So the theorem doesn't hold in general once we use some other notion of 'function.'

Serre's Theorem

Uh-oh: $\mathcal{O}^{A}\left(\mathbb{C P} \mathbb{P}^{1}\right)=\mathbb{C}$. Projective modules over $\mathbb{C}=$ complex vector spaces.

So the theorem doesn't hold in general once we use some other notion of 'function.'

Theorem (Serre's Theorem, 1955)
Let $V \subset \mathbb{C}^{n}$ be the solution set of the polynomials $p_{1}\left(x_{1}, \ldots, x_{n}\right)=\cdots=p_{k}\left(x_{1}, \ldots, x_{n}\right)=0$. Algebraic vector bundles on V are equivalent to projective modules over algebraic functions on V, which is the ring $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(p_{1}, \ldots, p_{k}\right)$

K-Theory

Suggests that we should look for a homology theory for rings: an algebraic K-Theory on CommRing, for which the Oth functor is given by

$$
K_{0}(R)=G r(\mathrm{fg} \text { projective modules })
$$

K-Theory

Suggests that we should look for a homology theory for rings: an algebraic K-Theory on CommRing, for which the Oth functor is given by

$$
K_{0}(R)=G r(\mathrm{fg} \text { projective modules })
$$

This is functorial because given a map $R \rightarrow S$ and a projective R-module M, the S-module $S \otimes_{R} M$ is projective.

K-Theory

Suggests that we should look for a homology theory for rings: an algebraic K-Theory on CommRing, for which the Oth functor is given by

$$
K_{0}(R)=G r(\mathrm{fg} \text { projective modules })
$$

This is functorial because given a map $R \rightarrow S$ and a projective R-module M, the S-module $S \otimes_{R} M$ is projective. Problem: not so obvious how to create a homology theory for rings (can't just use spectrum!).

K-Theory

Recall: $\tilde{K}^{1}(X)=\tilde{K}^{0}(\Sigma X)=[X, G L(\mathbb{R})]$.

K-Theory

Recall: $\tilde{K}^{1}(X)=\tilde{K}^{0}(\Sigma X)=[X, G L(\mathbb{R})]$. Since X is compact each map factors as $X \rightarrow G L_{n}(\mathbb{R})$.

K-Theory

Recall: $\tilde{K}^{1}(X)=\tilde{K}^{0}(\Sigma X)=[X, G L(\mathbb{R})]$. Since X is compact each map factors as $X \rightarrow G L_{n}(\mathbb{R})$. Equivalently, we get a map in $G L_{n}(C(X))$. So we have a map $G L(C(X)) \rightarrow \tilde{K}^{1}(X)$.

K-Theory

Recall: $\tilde{K}^{1}(X)=\tilde{K}^{0}(\Sigma X)=[X, G L(\mathbb{R})]$. Since X is compact each map factors as $X \rightarrow G L_{n}(\mathbb{R})$. Equivalently, we get a map in $G L_{n}(C(X))$. So we have a map $G L(C(X)) \rightarrow \widetilde{K}^{1}(X)$. Important fact I won't prove: The image of any elementary matrix (matrix obtainable by doing row operations on the identity matrix) is a trivial bundle.

K-Theory

Recall: $\tilde{K}^{1}(X)=\tilde{K}^{0}(\Sigma X)=[X, G L(\mathbb{R})]$. Since X is compact each map factors as $X \rightarrow G L_{n}(\mathbb{R})$. Equivalently, we get a map in $G L_{n}(C(X))$. So we have a map $G L(C(X)) \rightarrow \tilde{K}^{1}(X)$. Important fact I won't prove: The image of any elementary matrix (matrix obtainable by doing row operations on the identity matrix) is a trivial bundle. So we actually get a map

$$
\frac{G L(C(X))}{E(C(X))} \rightarrow \tilde{K}^{1}(X)
$$

K-Theory

Recall: $\tilde{K}^{1}(X)=\tilde{K}^{0}(\Sigma X)=[X, G L(\mathbb{R})]$. Since X is compact each map factors as $X \rightarrow G L_{n}(\mathbb{R})$. Equivalently, we get a map in $G L_{n}(C(X))$. So we have a map $G L(C(X)) \rightarrow \tilde{K}^{1}(X)$. Important fact I won't prove: The image of any elementary matrix (matrix obtainable by doing row operations on the identity matrix) is a trivial bundle. So we actually get a map

$$
\frac{G L(C(X))}{E(C(X))} \rightarrow \tilde{K}^{1}(X)
$$

Define $K^{1}(R)$ to be the quotient $G L(R) / E(R)$.

K-Theory

Recall: $\tilde{K}^{1}(X)=\tilde{K}^{0}(\Sigma X)=[X, G L(\mathbb{R})]$. Since X is compact each map factors as $X \rightarrow G L_{n}(\mathbb{R})$. Equivalently, we get a map in $G L_{n}(C(X))$. So we have a map $G L(C(X)) \rightarrow \widetilde{K}^{1}(X)$. Important fact I won't prove: The image of any elementary matrix (matrix obtainable by doing row operations on the identity matrix) is a trivial bundle. So we actually get a map

$$
\frac{G L(C(X))}{E(C(X))} \rightarrow \tilde{K}^{1}(X)
$$

Define $K^{1}(R)$ to be the quotient $G L(R) / E(R)$. Then we get a SES

$$
0 \longrightarrow C(X)^{* 0} \longrightarrow K^{1}(C(X)) \longrightarrow \tilde{K}^{1}(X) \longrightarrow 0
$$

K-Theory

Recall: $\tilde{K}^{1}(X)=\tilde{K}^{0}(\Sigma X)=[X, G L(\mathbb{R})]$. Since X is compact each map factors as $X \rightarrow G L_{n}(\mathbb{R})$. Equivalently, we get a map in $G L_{n}(C(X))$. So we have a map $G L(C(X)) \rightarrow \widetilde{K}^{1}(X)$. Important fact I won't prove: The image of any elementary matrix (matrix obtainable by doing row operations on the identity matrix) is a trivial bundle. So we actually get a map

$$
\frac{G L(C(X))}{E(C(X))} \rightarrow \tilde{K}^{1}(X)
$$

Define $K^{1}(R)$ to be the quotient $G L(R) / E(R)$. Then we get a SES

$$
0 \longrightarrow C(X)^{* 0} \longrightarrow K^{1}(C(X)) \longrightarrow \tilde{K}^{1}(X) \longrightarrow 0
$$

Note: $C(X)^{* 0}$ has no good algebraic definition.

K-Theory

Recall: $\tilde{K}^{1}(X)=\tilde{K}^{0}(\Sigma X)=[X, G L(\mathbb{R})]$. Since X is compact each map factors as $X \rightarrow G L_{n}(\mathbb{R})$. Equivalently, we get a map in $G L_{n}(C(X))$. So we have a map $G L(C(X)) \rightarrow \widetilde{K}^{1}(X)$. Important fact I won't prove: The image of any elementary matrix (matrix obtainable by doing row operations on the identity matrix) is a trivial bundle. So we actually get a map

$$
\frac{G L(C(X))}{E(C(X))} \rightarrow \tilde{K}^{1}(X)
$$

Define $K^{1}(R)$ to be the quotient $G L(R) / E(R)$. Then we get a SES

$$
0 \longrightarrow C(X)^{* 0} \longrightarrow K^{1}(C(X)) \longrightarrow \tilde{K}^{1}(X) \longrightarrow 0
$$

Note: $C(X)^{* 0}$ has no good algebraic definition.
No "higher Serre-Swan" theorem. Higher Algebraic K-Theory is not even (in general) periodic.

K-Theory is Hard

Restrict attention to more "algebraic" rings: fields, affine coordinate rings, etc.

K-Theory is Hard

Restrict attention to more "algebraic" rings: fields, affine coordinate rings, etc.
By Serre's Theorem, proving that algebraic vector bundles on \mathbb{C}^{n} are trivial is equivalent to proving fg projective modules over $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ are free.

K-Theory is Hard

Restrict attention to more "algebraic" rings: fields, affine coordinate rings, etc.
By Serre's Theorem, proving that algebraic vector bundles on \mathbb{C}^{n} are trivial is equivalent to proving fg projective modules over $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ are free.
Theorem (Quillen-Suslin, 1976)
A finitely generated projective module over $k\left[x_{1}, \ldots, x_{n}\right]$ is free.
Proof helped earn Quillen a fields medal in 1978.

K-Theory is Hard

Restrict attention to more "algebraic" rings: fields, affine coordinate rings, etc.
By Serre's Theorem, proving that algebraic vector bundles on \mathbb{C}^{n} are trivial is equivalent to proving fg projective modules over $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ are free.
Theorem (Quillen-Suslin, 1976)
A finitely generated projective module over $k\left[x_{1}, \ldots, x_{n}\right]$ is free.
Proof helped earn Quillen a fields medal in 1978. Things that we know the higher K-theory for:

K-Theory is Hard

Restrict attention to more "algebraic" rings: fields, affine coordinate rings, etc.
By Serre's Theorem, proving that algebraic vector bundles on \mathbb{C}^{n} are trivial is equivalent to proving fg projective modules over $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ are free.
Theorem (Quillen-Suslin, 1976)
A finitely generated projective module over $k\left[x_{1}, \ldots, x_{n}\right]$ is free.
Proof helped earn Quillen a fields medal in 1978. Things that we know the higher K-theory for:

- Finite fields

