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Bundles and Local Sections

Given a vector bundle p : E → X , we can take local sections on
any open subset U ⊂ X . These form a module over the ring of
functions C(U).

Question: given some suitable data of “modules over (some) of the
rings C(U),” can we construct a corresponding vector bundle?

Starting point: given a finitely generated, free module over C(X ),
it is the global sections of a trivial bundle.
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What’s a Vector Bundle?

A vector bundle over a space X is an open cover {Ui} and
transition homeomorphisms fαβ : Uα ∩ Uβ × Rn → Uα ∩ Uβ × Rn

(which are over X , linear on fibers, and satisfy a cocyle condition
over Uα ∩ Uβ ∩ Uγ).

We encapsulate this in a diagram that looks
like this:

Uα × Rn Uβ × Rn

Uα ∩ Uβ × Rn Uα ∩ Uβ × Rn
ι

fαβ
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What’s a Map Between Vector Bundles?
Suppose that we are presented with two vector bundles trivial over
the same cover {Ui}, with transition functions {fαβ} and {gαβ}.

Then a map between them is a set of maps
{ψi : Ui × Rn → Ui × Rn} such that each map is over X , and
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What’s a Vector Bundle? pt. II

Trivial vector bundles correspond to free modules of sections.

The
transition data fαβ : Uα ∩ Uβ → GLn(R) is equivalent to a function
f̃αβ ∈ GLn(C(Uα ∩ Uβ)) . So, an ‘algebraically presented’ vector
bundle is an open cover {Ui} (over which the module of sections is
free) and transition maps f̃αβ ∈ GLn(C(Uα ∩ Uβ)).

C(Uα)⊕n C(Uβ)⊕n

C(Uα ∩ Uβ)⊕n C(Uα ∩ Uβ)⊕n

r
r

f̃αβ

The maps r are induced by restriction maps C(U)→ C(V ) for
V ⊆ U.

The cocycle condition f̃βγ f̃αβ = f̃αγ makes sense viewing them all
as elements of GLn(C(Uα ∩ Uβ ∩ Uγ)).
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What’s a Map Between Vector Bundles? pt. II
Building on our previous idea of what a map between (geometric)
vector bundles is, a map between ‘algebraically presented’ vector
bundles is a big commutative diagram something like:

C(Uα)⊕n C(Uβ)⊕n
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Note: the maps marked r are not surjective, but their image is a
generating set (for the same reason C(Uα)→ C(Uα ∩ Uβ) is not
surjective, but its image contains 1).
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Example

Consider the usual cover of the circle by S1 \ {0} and S1 \ {π}.

To
give a line bundle on S1 is to give a module map
f12 : C(S1 \ {0, π})⊕1 → C(S1 \ {0, π})⊕1. Equivalently, it is a
choice of generator for the module, which is any nowhere zero
function.

The trivial line bundle is obtained by functions which are
everywhere positive or everywhere negative, and the Mobius bundle
by picking a function which has opposite sides on the two
connected components.
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...why though?

One big advantage to this: easily describes vector bundles
compatible with additional structure.

I Replace C(U) with C∞(U) (smooth functions) - get smooth
vector bundles.

I Replace C(U) with OH(U) (holomorphic functions) - get
holomorphic vector bundles.

I Replace C(U) with OA(U) (algebraic functions) - get
“algebraic vector bundles.”
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Better Example

Consider CP1 = C ∪ {∞}.

Algebraic functions on an open subset
U ⊆ CP1 are rational functions with no poles in U.

First, assume algebraic vector bundles on C are trivial.

Let U1 = CP1 \ {∞} and U2 = CP1 \ {0}. Algebraic functions on
U1 ∩ U2 = C[x , x−1]. So an algebraic line bundle on CP1 is given
by a module automorphism of C[x , x−1], which amounts to a
choice of n for x 7→ xn (x 7→ λxn for λ ∈ C gives the same bundle
for any λ). This gives us a surjective map
Z→ {line bundles on CP1}.

(Unimportant aside: this map is injective, and a group
homomorphism).
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Serre’s Theorem

Uh-oh: OA(CP1) = C.

Projective modules over C = complex
vector spaces.

So the theorem doesn’t hold in general once we use some other
notion of ‘function.’

Theorem (Serre’s Theorem, 1955)
Let V ⊂ Cn be the solution set of the polynomials
p1(x1, ..., xn) = · · · = pk(x1, ..., xn) = 0. Algebraic vector bundles
on V are equivalent to projective modules over algebraic functions
on V , which is the ring C[x1, ..., xn]/(p1, ..., pk)
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K-Theory

Suggests that we should look for a homology theory for rings: an
algebraic K-Theory on CommRing, for which the 0th functor is
given by

K0(R) = Gr(fg projective modules)

This is functorial because given a map R → S and a projective
R-module M, the S-module S ⊗R M is projective. Problem: not so
obvious how to create a homology theory for rings (can’t just use
spectrum!).
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K-Theory

Recall: K̃ 1(X ) = K̃ 0(ΣX ) = [X ,GL(R)].

Since X is compact each
map factors as X → GLn(R). Equivalently, we get a map in
GLn(C(X )). So we have a map GL(C(X ))→ K̃ 1(X ). Important
fact I won’t prove: The image of any elementary matrix (matrix
obtainable by doing row operations on the identity matrix) is a
trivial bundle. So we actually get a map

GL(C(X ))
E (C(X )) → K̃ 1(X )

Define K 1(R) to be the quotient GL(R)/E (R). Then we get a SES

0 C(X )∗0 K 1(C(X )) K̃ 1(X ) 0

Note: C(X )∗0 has no good algebraic definition.
No “higher Serre-Swan” theorem. Higher Algebraic K-Theory is
not even (in general) periodic.
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No “higher Serre-Swan” theorem. Higher Algebraic K-Theory is
not even (in general) periodic.
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K-Theory is Hard

Restrict attention to more “algebraic” rings: fields, affine
coordinate rings, etc.

By Serre’s Theorem, proving that algebraic vector bundles on Cn

are trivial is equivalent to proving fg projective modules over
C[x1, ..., xn] are free.

Theorem (Quillen-Suslin, 1976)
A finitely generated projective module over k[x1, ..., xn] is free.
Proof helped earn Quillen a fields medal in 1978. Things that we
know the higher K-theory for:

I Finite fields
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