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1 Introduction
This document serves as an introduction to the theory of spectral sequences, suited to a student who has
completed a course in algebraic topology covering both homology and homotopy. In this document, we
motivate and outline the general machinery of spectral sequences, using a slew of nontraditional examples
to capture some of the basic phenomena.

There are two companion notes, and together these three documents comprise the notes from the author’s
A Exam: one covers the construction of the bar spectral sequence, which relates the homology of an H-space
X to the homology of its delooping BX, and uses it to prove S 7 cannot be endowed with an associative (that
is, A∞) multiplication. The final note is an example of a different flavor, the EHP spectral sequence. This
spectral sequence contains information about the (stable and unstable) homotopy groups of spheres.

Unless otherwise stated, by H(−) we shall mean ordinary singular (or simplicial) homology with coef-
ficients in Z; or, when applied to a chain complex, the homology of that chain complex. All spaces will be
topological, and pointed. By ∗ we mean the space with a single point. We denote weak homotopy equiva-
lences with “'”. We will be guilty of using “B” to mean at least 3 distinct functors, and “| − |” to mean at
least 2 distinct functors.

Any reader should be warned that we take slightly different conventions than is typical. In particular
we use n to denote homological degree and i to denote filtration degree. By contrast, Hatcher takes n to be
the total degree (the sum of the homological and filtration degrees) and i to be the filtration degree. This
results in a relative “sheering” of our spectral sequences relative to Hatcher (and several other sources). We
have chosen to break this convention because it simplifies the exposition of the basic theory, even though the
established convention is better for most examples.

2 The General Machinery
Homology is “computable,” which is to say that given a suitable representation of a space X, there is an algo-
rithm which will output the homology groups of X. For example, if X is given as a finite simplicial complex,
then its homology groups can be calculated using simplicial homology: one takes the chain complex

· · · Z|Xn | Z|Xn−1 | · · ·
∂n+1 ∂n ∂n−1

The maps ∂n are maps between free Z-modules, and therefore have representations as integer matrices, which
we denote M(∂n). In fact they have very simple representations: order the elements of Xn, as (x1, . . . , x|Xn |),
and likewise for Xn−1, whose elements we denote by (y1, . . . , y|Xn−1 ). Letting dk denote the kth boundary
operator, we have that

M(∂n)i, j =


1 if there exist an even k ≥ 0 s.t. dk(xi) = y j

−1 if there exist an odd k ≥ 0 s.t. dk(xi) = y j

0 otherwise

Consequently, the calculation of homology is reduced to calculating the quotient ker(∂n)/im(∂n+1) of ker-
nels and images of integer matrices. This can be done with techniques of integer linear algebra; calculating
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homology is just a matter of doing elementary matrix operations.
In practice, of course, we are generally not given a space as an explicit simplicial complex, except while

doing problem sets for a first course in Algebraic Topology. Still, this example gives us hope that much
in the way of homological computations can be done by simply “keeping track of all the details” and then
carrying out some algebraic computations. But in practice, organizing the massive amounts of information
present even in simple computations can be prohibitively time consuming. A spectral sequence is a general
technique for simplifying this.

Suppose we are give a space X with a filtration {} ⊂ X0 ⊂ X1 ⊂ · · · ⊂ X. By this we mean that we
have spaces Xi for i ≥ 0, equipped with inclusion maps Xi−1 → Xi, such that X is the colimit of the Xi. It is
convenient to take the perspective that X is built out of the pieces Xi \Xi−1; for instance, in the case where the
filtration is the simplicial filtration of a simplicial complex, this is saying that X is iteratively formed from its
i-simplices. By understanding the individual pieces, we hope to understand the space X. Of course, we also
need to understand the way in which they attach to each other - hence we want to understand the relative
pairs (Xi, Xi−1). For instance, suppose that X is a CW complex and Xi a CW filtration. Then we know that
Xi \Xi−1 is a disjoint union of i-disks, and Hi(Xi, Xi−1) is a free abelian group generated by these disks. These
assemble into a chain complex

· · · → Hi(Xi, Xi−1)→ Hi−1(Xi−1, Xi−2)→ · · ·

with differentials determined by the attaching cellular maps, and the homology of this complex is the cellular
homology of X, which is naturally isomorphic to the ordinary singular homology of X.

This example was rather simple because the filtration played nicely with homological dimension: the
pair (Xi, Xi−1) has homology concentrated in degree i. Now let us consider the more general situation: given
some arbitrary filtration

⋃
Xi = X, for each pair (Xi, Xi−1) we have homology groups Hn(Xi, Xi−1). We hope

to maybe use this information to deduce the homology groups of X, as we did with the cellular filtration. So
we write them all down in a big grid:
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(X3, X2) H0(X3, X2) H1(X3, X2) H2(X3, X2) H3(X3, X2)

(X2, X1) H0(X2, X1) H1(X2, X1) H2(X2, X1) H3(X2, X1)

(X1, X0) H0(X1, X0) H1(X1, X0) H2(X1, X0) H3(X1, X0)

(X0, X−1) H0(X0) H1(X0) H2(X0) H3(X0)

H0 H1 H2 H3

If we were working with the special case of a CW filtration, only the terms on the main diagonal would be
nonzero. In the CW filtration case, there were also some differential maps, obtained by taking a cell to its
boundary. What do we have in this more general, less obviously geometric situation? Well, for each pair
(Xi, Xi−1) we have long exact sequences of homology groups, and we can glue them together like so:

· · · Hn+1(Xi+2) Hn+1(Xi+2, Xi+1) Hn(Xi+1) Hn(Xi+2) · · ·

· · · Hn+1(Xi+1, Xi) Hn(Xi) Hn(Xi+1) Hn(Xi+1, Xi) · · ·

· · · Hn(Xi−1) Hn(Xi) Hn(Xi, Xi−1) Hn−1(Xi−1) · · ·

ι r δ ι r

r δ ι r δ

δ ι r δ ι

Where by the vertical double lines we just mean the identity map. Exactness of the horizontal sequences
tells us that the “staircase” sequences

· · · Hn+1(Xi+1, Xi) Hn(Xi, Xi−1) · · ·
r◦δ r◦δ r◦δ

Are chain complexes; in the special case of the CW filtration and the complex of terms were n = i, this
differential r ◦ δ actually coincides with the cellular differential. But what does this differential tell us about
our space in general? Let’s explore a few examples, and then we’ll regroup to prove some theorems.

2.1 First Examples of Spectral Sequences
All of the following will be toy examples of spectral sequences. We will observe informal things about them,
as we have not yet properly defined them - for now, the reader may think of a spectral sequence as being the
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collection of relative homology groups associated to each adjacent pair in a filtration {} ⊂ X0 ⊂ X1 ⊂ · · · ⊂ X.
The reader is invited to peruse this section, and then later read through it again after reading the subsequent,
more formal section on the general theory.

Example Let X be the space D2 ∨ S 1. Consider the filtration X−1 ⊂ X0 ⊂ X2 ⊂ X3 = X where X−1 = {},
X0 = ∗ ∨ ∗, X1 = S 1 ∨ ∗, X2 = S 1 ∨ S 1, X3 = D2 ∨ S 1. Another way of phrasing this is that X has a cellular
structure consisting of 4 cells: the point ∗, the left circle e1

` , the right circle e1
r , and the disk attaching to the

left circle, e2
` . This filtration is

{} ⊂ {∗} ⊂ {∗, e1
` } ⊂ {∗, e

1
` , e

1
r } ⊂ {∗, e

1
` , e

1
r , e

2
` } = X

Then we can organize the relative homology of adjacent pairs in the filtration in the following spreadsheet:

(X3, X2) 0 0 Z[e2] 0

(X2, X1) 0 Z[e1
r ] 0 0

(X1, X0) 0 Z[e1
` ] 0 0

(X0, X−1) Z[∗] 0 0 0

H0 H1 H2 H3

The terms are all rank 1 free groups, generated by the cells of X. We consider our differential d : Hn(Xi, Xi−1)→
Hn−1(Xi−1, Xi−2) with the formula d = r ◦ δ. In this case, d = 0: to check this we really only need to consider
two cases for degree reasons, as r ◦ δ will always go to the left and down by one unit each. We consider first
d : Z[e1

` ] → Z[∗], which is 0 as e1
` is a cycle. The second is d : Z[e2

` ] → Z[e1
r ], which is 0 as it sends the

generator e2
` to its boundary e1

` which is 0 in the group H1(X2, X1).
Of course, we know there ought to be a nontrivial differential here, an isomorphism Z[e2

` ] → Z[e1
` ]

expressing that the boundary of e2
` is e1

` . We can actually get this from our long exact sequences: define
d2 = r ◦ ι−1 ◦ δ. Then this is well defined (again, there are only really two cases to check, which we leave to
the reader), and moreover, the component d2 : Z[e2

` ] → Z[e1
` ] is an isomorphism. If we take the homology

with respect to this d2, then we obtain
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(X3, X2) 0 0 0 0

(X2, X1) 0 Z[e1
r ] 0 0

(X1, X0) 0 0 0 0

(X0, X−1) Z[∗] 0 0 0

H0 H1 H2 H3

And we note that we can correctly read off the homology of our space X from this grid: it is Z[∗] in dimension
0 and Z[e1

r ] in dimension 1, and 0 in other dimensions.
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Example Let our space X be the torus S 1 × S 1, with the filtration ∗ ⊂ S 1 ⊂ S 1 ∨ S 1 ⊂ S 1 × S 1. If we write
down our grid, we get

(X3, X2) 0 0 Z 0

(X2, X1) 0 Z 0 0

(X1, X0) 0 Z 0 0

(X0, X−1) Z 0 0 0

H0 H1 H2 H3

And we can check that d is zero (this follows for the same reasons that the cellular differential for the cellular
chain complex of the torus is 0). Furthermore, if we try to define d2 as in the previous example, then this
is also 0. This fits with the following observation: this grid contains precisely the homology of X! That is,
if we sum up along the columns, we have a Z in the H0-column, a Z ⊕ Z in the H1-column, and Z in the
H2-column. So we appear to have again computed the homology from a non-cellular filtration. This case
demonstrates a phenomenon we have not yet seen: there the H1 column has two separate terms which we
sum together to get the overall homology. The next example will further explore this.
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Example Let X be the mapping cylinder of a degree two map S 1 → S 1. Filter it by X0 = ∗, X1 = the source
circle, and X2 = X. Then the grid we get looks as follows:

(X2, X1) 0 Z/2Z 0

(X1, X0) 0 Z 0

(X0, X−1) Z 0 0

H0 H1 H2

The first row is the homology of a point, the second the homology of a circle relative to a point, and the
third the homology of the mapping cylinder relative to the source space, which is equivalently the reduced
homology of the mapping cone - in this case, the mapping cone is RP2, hence the Z/2Z. We can again check
that all the differentials are 0. So what are we to make of this? Well, certainly we can’t just read off the
homology again - our space X is homotopy equivalent to a circle, so it should have H0 and H1 both Z, but
here we have some strange copy of Z/2Z floating around.

Well, we attempt to explain it as follows: if we consider the chain of inclusions X0 ⊂ X1 ⊂ X2 = X and
apply H1, we have a sequence of groups 0 → Z → Z, where the last map is multiplication by 2. If we take
quotients of adjacent terms, we therefore get Z and Z/2Z. So maybe that Z/2Z has something to do with the
fact that the inclusion of H1(X1, X0) into H1(X) isn’t an isomorphism, but has Z/2Z as its cokernel.
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Example Let X be a CW-complex and Xi be the 2i-skeleton of X. Then there are two types of nonzero
terms, H2i(Xi, Xi−1) and H2i−1(Xi, Xi−1). We have that H2i(Xi, Xi−1) is generated by the 2i-cells of X, whereas
H2i−1(Xi, Xi−1) is isomorphic to H2i−1(X). Our spreadsheet looks like

(X3, X2) 0 0 0 0 0 H5(X3, X2) H6(X3, X2))

(X2, X1) 0 0 0 H3(X2, X1) H4(X2, X1) 0 0)

(X1, X0) 0 H1(X1, X0)) H2(X1, X0) 0 0 0 0

(X0, X−1) H0(X0, ∗) 0 0 0 0 0 0

H0 H1 H2 H3 H4 H5 H6

The differentials which may be nonzero are those which go H2i−1(X2i, X2i−2) → H2i−1(X2i−2, X2i−4), and
we have drawn them in. Some basic (though nontrivial) analysis of cellular homology tells us that if we
take the homology of all differentials, we again end up with the homology groups of X, in the appropriate
columns.
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Example Let X be a CW-complex and X2i = X2i+1 be the i-skeleton of X. In this case, we end up with a
spreadheet like:

(X3, X2) 0 0 0

(X2, X1) 0 H1(X2, X1) 0

(X1, X0) 0 0 0

(X0, X−1) H0(X0, ∗) 0 0

H0 H1 H2

Here none of the differentials r ◦ δ can be nonzero, simply for degree reasons. But again, we can define
d2 = r ◦ ι−1 ◦ δ, and we will get a stretched-out version of our first example, with the chain complex

· · · → H2(X4, X3)→ H1(X2, X1)→ H(0, X0, {})

which is precisely the cellular chain complex of the space X, and so taking homology of this we will again
get the homology of X.

These examples demonstrate various phenomena with spectral sequences that are absent from the special
case of a cellular filtration: (1) that there may be nonzero groups Hn(Xi, Xi−1) for many values of n for a fixed
i, and (2) that terms Hn(Xi, Xi−1) may interact with terms far away in the filtration, and (3) reconstructing the
homology of X from the grid of groups may be nontrivial. We need some machinery that can organize all of
this.

2.2 Some actual definitions
Definition A (bigraded) exact couple is a diagram

A A

E

ι

rδ

of (bigraded) modules which is exact at each term.
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CONVENTION ALERT: we will omit the word “bigraded” from now on when describing exact couples,
as all our exact couples will be of bigraded modules.

Example Let X be a space and (Xi) a filtration. Then there is an exact couple⊕
n,i Hn(Xi)

⊕
n,i Hn(Xi)

⊕
n,i Hn(Xi, Xi−1)

ι

rδ

Note the degrees of each map: ι has bidegree (0, 1), r has bidegree (0, 0), and δ has bidegree (−1,−1).

The point of this formalism is that it allows us to neatly bundle up what we did before:

Definition Given an exact couple

A A

E

ι

rδ

There is a differential d : E → E defined by d = r ◦ δ. The derived couple is the exact couple given by

im(ι) im(ι)

H(d)

ι

r◦ι−1δ

Where by H(d) we mean the homology of d, by δ̄ we mean the map which sends a homology class repre-
sented by x to δ(x), and by r ◦ ι−1 we mean the map which sends ι(x) to r(x).

Theorem 2.1. The above is a well defined exact couple.

The proof of this statement is a not-too-difficult exercise in homological algebra, so we omit it.

In the second and fifth examples above, we used the differential d = r ◦ ι−1 ◦ δ, which is the differential
associated to the derived exact couple of our starting exact couple. We can think of this as taking the derived
couple, and then taking the homology of its differential to calculate the homology of our space X - or,
equivalently, taking the derived couple of our derived couple. This iterated process is what leads to our main
definition:

Definition Let

A A

E

ι

rδ

be an exact couple. Its associated spectral sequence is the sequence of differential bigraded modules (Ei, di)
defined as follows: Ei is the bottom term of the (i− 1)-fold derived couple, and di the associated differential.
In particular, E1 = E, d1 = r ◦ δ, and Ei+1 = H(di). We refer to each Ei as the ith page of the spectral
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sequence. If for some r, we have that ∀i ≥ r di = 0, then it follows that Er � Er+1 � · · · and we denote
this as E∞. In this case we say the spectral sequence collapses at the Er-page. More weakly, if for any fixed
i and n, Er

n,i � Er+1
n,i � · · · then we say that the spectral sequence converges and call the stable values E∞i,n,

the E-infinity page. Note that collapse implies convergence, but the reverse implication does not necessarily
hold.

Definition Let • ⊂ X0 ⊂ X1 ⊂ · · · be a filtration of a space X. The (homological) spectral sequence
associated to this filtration is the spectral sequence associated to the exact couple⊕

n,i Hn(Xi)
⊕

n,i Hn(Xi)

⊕
n,i Hn(Xi, Xi−1)

ι

rδ

In our previous examples, the spectral sequences collapsed at the E2, E2, and E3 pages, and these pages
contained the homology of X. More generally, we might wonder exactly what the E∞ page of the spectral
sequence contains. We now make a simplifying assumption about our exact couples that will hold in all
cases of interest to us.

1. For each n, the sequence · · · → An,i → An,i+1 → · · · stabilizes. Equivalently, for a fixed n, only finitely
many of the maps ιn,i are not isomorphisms. Also equivalently, for a fixed n, only finitely many of the
terms En,i are nonzero.1

2. For each n, the sequence · · · → An,i → An,i+1 → · · · is zero for sufficiently low i.

If condition (1) is satisfied, we denote the stable term as An,∞. This is satisfied for the homological exact
couple of any filtration such that Xi is obtained from Xi−1 by gluing cells of dimension increasing with i.
This includes all of our examples so far. Since we take our filtrations to begin with X−1 = {•}, condition (2)
is satisfied for the homological exact couple of any filtration.

With these assumptions, we can prove the theorem which lends spectral sequences their computational
utility:

Theorem 2.2. Let

A A

E

ι

rδ

Be an exact couple satisfying (1) and (2). Then the associated spectral sequence converges. Furthermore, if
we denote by Fn,i the image of An,i in An,∞, then

E∞n,i � Fn,i/Fn,i−1

Thus, modulo the extension problem, the E∞ page of the spectral sequence tells us the stable values An,∞.
1A stronger condition that is often satisfied is that the sequence ι, ι2, ι3, . . . stabilizes up to isomorphism.
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Proof. For each r ≥ 0, the rth derived couple gives us an exact sequence

Er
n+1,i+r−1 → Ar

n,i+r−2 → Ar
n,i+r−1 → Er

n,i → Ar
n−1,i−1

Condition (1) tells us that for sufficiently large r, the term Er
n+1,i+r−1 is 0. Condition (2) tells us that for

sufficiently large r, the term Ar
n−1,i−1 is 0. Consequently, for sufficiently large r, we have a short exact

sequence
0→ Ar

n,i+r−2 → Ar
n,i+r−1 → Er

n,i → 0

Which, referring to the definition of the derived exact couple, is

0→ ιr−1(An,i−1)→ ιr−1(An,i)→ Er
n,i → 0

which proves the claim. �

It is typical to write the conclusion of this theorem as Er
n,i ⇒ An,∞. As an immediate corollary of this,

we get the following:

Theorem 2.3. Let X be a space with a filtration • ⊂ X0 ⊂ · · · ⊂ X, such that the homological exact couple
satisfies (1). Then there is a spectral sequence with E1

n,i = Hn(Xi, Xi−1) and Er
n,i ⇒ Hn(X). The differentials

dr have degree (−1,−1 − r)

This may seem a daunting theorem to apply: there is a potentially immense amount of data necessary
to write down the E1 page, and furthermore computing further pages (up to the E∞ page) may require very
explicit, tedious computations of iterated exact couples. For this reason, the existence of a spectral sequence
is not enough to perform efficient calculations. However, in many cases, purely formal arguments can yield
powerful results, and the general framework tends to greatly illuminate the study of a particular space.
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