
A couple must-know cohomology calculations

Kimball Strong

We will follow roughly the path used in “Algebraic Topology” by Tammo tom Dieck (my personal favorite
Atop reference) in order to calculate the cohomology rings of RP∞ and CP∞. The calculation there takes
place in sections 17.8-17.9; the primary ingredient is the Thom Isomorphism Theorem. Hatcher was also
referenced (mainly to go from Z/2Z coefficients to Z coefficients for RPn), as well as online notes by Will
Merry (mainly for the orientation bit).

By H∗ we mean singular cohomology with coefficients in a ring R. All modules will be left modules.
Results are proved over compact/finite dimensional CW complexes to save me some effort.

1 The Leray-Hirsch Theorem

Definition 1.1. A relative fibration of the pair (E,E′) over B is a map p : E → B such that both p and
p|E′ are fibrations. We will write p′ for p|E′ , and write F and F ′ for the fibers over the base point ∗ ∈ B of
p and p′, respectively (and i and i′ for their respective inclusions). We do not require that E′ be nonempty.

Consider a relative fibration (F, F ′)
(i,i′)
↪−−−→ (E,E′)

(p,p′)−−−→ B. Given an element c ∈ H∗(E,E′) and an
element b ∈ H∗(B), we can take the cup product p∗(b) ^ c. This endows H∗(E,E′) with the structure
of an H∗(B) module. We can add the structure of an H∗(B) module to H∗(F, F ′) by tensoring to form
H∗(B) ⊗ H∗(F, F ′). While we in general have no map between the two, if the map i∗ is surjective and
Hn(F, F ′) is free for each n, then we can define a map in the following manner: let {cj} be a set of elements
of H∗(E,E′) such that {i∗(cj)} is a basis for H∗(F, F ′) (as an R-module). Then the partially defined map

L : H∗(B)⊗H∗(F, F ′)→ H∗(E,E′)

given by 1⊗ i∗(cj) 7→ cj extends uniquely to a map of H∗(B) modules.

Theorem 1.2. Let (F, F ′)
(i,i′)
↪−−−→ (E,E′)

(p,p′)−−−→ B be a relative fibration over a connected, finite dimensional
CW complex. Suppose that there are classes cj ∈ H∗(E,E′) such that {i∗x(cj)} freely generate H∗(Fx, F

′
x)

for each x ∈ B (as an R module). Then the map L : H∗(B)⊗H∗(F, F ′)→ H∗(E,E′) described above is an
isomorphism of graded R-modules.

Note as a consequence that the elements {cj} are a basis for H∗(E,E′) as an H∗(B) module (so it is
free).

Proof. Note that for a subspace A ⊂ B, we obtain a restricted relative fibration

(F, F ′)
(i,i′)
↪−−−→ (E|A,E′|A)

(p,p′)−−−→ A

and an associated module map LA : H∗(A)⊗H∗(F, F ′)→ H∗(E|A,E′|A), where we use the restrictions of
cj to H∗(E|A,E′|A). In the case A = B0 = {∗}, this reduces to

LB0 : R⊗H∗(F, F ′)→ H∗(F, F ′)

Which is just the isomorphism 1⊗ c 7→ 1 ^ c = c. More generally, for B0 =
∐
I e

0
i , the map is

LB0 : (
∏
I

R)⊗H∗(F, F ′)→
∏
I

H∗(E|e0i , E′|e0i )
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Which because H∗(F, F ′) is finitely generated and free, reduces to the isomorphism∏
i

Le0i :
∏
I

(R⊗H∗(F, F ′))→
∏
I

H∗(E|e0i , E′|e0i )

We will now proceed by induction on the skeleta Bn of B, with n = 0 as our base case: assume that the
isomorphism holds for the fibration restricted to Bn−1. Let U be the subspace of Bn obtained by deleting a
single point from each n-cell of Bn - then U is homotopy equivalent to Bn−1. Let V be the subspace of Bn

consisting of the interiors of all the n-cells. Then we obtain MV sequences, which give us a big commutative
diagram:

H∗(U ∪ V )⊗H∗(F, F ′) H∗(U)⊗H∗(F, F ′)⊕H∗(V ))⊗H∗(F, F ′) H∗(U ∩ V )⊗H∗(F, F ′)

H∗(p−1(U ∪ V )) (H∗(p−1(U))⊕H∗(p−1(V ))) H∗(p−1(U ∩ V ))

LU∪V LU⊕LV LU∩V

The bottom row is exact because it is a MV sequence, and the top row is exact because H∗(F, F ′) is free, so
tensoring with it preserves exactness. Once we show that LU , LV , and LU∩V are isomorphisms, we can in-
voke the five lemma to conclude that LU∪V = LBn is an isomorphism, which will complete our inductive step.

For LU : because U retracts to Bn−1, this follows from the induction hypothesis.

For LV : Because V =
∐
I e

n
i and the eni are contractible, this follows in the same way as the base

case (although now we have that (F, F ′)→ (E|eni , E′|eni ) is a weak homotopy equivalence rather than simply
being equal).

For LU∩V : U ∩ V deformation retracts to
∐
I ∂e

n
i , a disjoint union of (n − 1)-spheres. By the in-

duction hypothesis, the isomorphism holds over any single cell boundary. Using the same techniques as in
the LV case, it holds over their disjoint union.

2 Thom Classes and the Gysin Sequence

As a special case, consider a vector bundle of dimension n over a finite dimensional CW complex, p : E → B.
Let E0 = E \ B (considering B as the 0 section of E). Then (E,E0) → B is a relative fibration with fiber
(Rn,Rn \ {0}). In this case, the cohomology of the fiber is relatively simple, being R in degrees 0 and n.
Consequently, given only a single cohomology class t ∈ Hn(E,E0) such that its restriction to any fiber is a
generator, we obtain as a consequence of the Leray-Hirsch Theorem that the map Hk(B) → Hn+k(E,E0)
given by b 7→ p∗(b) ^ t is an isomorphism for 0 ≤ k. Even more, p is a homotopy equivalence. This allows
us to take the long exact sequence for the pair (E,E0) and replace Hk(E) with Hk(B), and Hk(E,E0) with
Hk−n(B). This gives us the Gysin sequence for the bundle p : E → B:

· · · Hk−1(E0) Hk−n(B) Hk(B) Hk(E0) · · ·

From the definitions, we get that the map Hk−n(B)→ Hk(B) is given by b 7→ b ^ (p∗)−1(t). The element
(p∗)−1(t) we denote by e and call the Euler class. The element t is called a Thom class.
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At this point, the main ingredient we are missing is an understanding of when a Thom class exists
for a cohomology theory. For the rest of this section, we will focus mainly on singular cohomology with Z
coefficients, and so H∗ will mean singular cohomology with coefficients in Z.

An orientation for a real vector space V is an equivalence class of ordered bases; two ordered bases
{v1, ..., vn} and {w1, ..., wn} are equivalent iff the map vi 7→ wi has positive determinant. A cohomological ori-
entation of the vector space V we will define as a generator of Hn(V, V \{0}) ∼= Z. Note that an ordinary ori-
entation determines a cohomological orientation in the following way: fix a generator γn ∈ Hn(Rn,Rn \{0}).
Then a basis B = {v1, ..., vn} of V determines a homeomorphism fB : V → Rn where vi 7→ ei. Then f∗B(γn)
is a generator for Hn(V, V \ {0}). We denote it γB .

Lemma 2.1. Two bases B and B′ are the same orientation if and only if γB = γ′B

Proof. Firstly, suppose that B and B′ are the same orientation. Then the change of basis map T : V → V
taking B to B′ has positive determinant, and is therefore homotopic to the identity map (since GLn(V ) has
two connected components). We have a commutative diagram

V

Rn

V

fB

T

fB′

Since T ∗ is the identity map, we have that γB = γB′ .

Conversely, suppose that B and B′ are opposite orientations. We want to show that γB 6= γB′ ; by
the last paragraph it suffices to show that there exist two bases of opposite orientation D and D′ such that
γD 6= γD′ . Up till now we have not required γn to be represented by anything in particular; now let it be
represented as the dual of the n-simplex such that the ith vertex qi is equal to the ith standard basis element
ei for i > 0, and q0 = − 1

n

∑
ei. Let D be any ordered basis and D′ the basis obtained by swapping the

first two vectors of D. Let S be the change of basis map on Rn which swaps e1 and e2. Then the following
commutes:

Rn

V

Rn

S

fD

fD′

Since S∗ : Hn(Rn,Rn \ {0}} → Hn(Rn,Rn \ {0}) is negation, we get that γD = −γD′

To carry this over to the case of vector bundles, consider a trivial vector bundle U × Rn → U . The
projection π : U ×Rn → Rn yields a class π∗(γn) ∈ Hn(U ×Rn, U × {0}). For any point x ∈ U , we have an
inclusion ιx : {x}×Rn ↪→ U ×Rn and see that ι∗x(π∗(γn)) is a generator. Therefore, π∗(γn) is a Thom class
for this bundle.

Now suppose we have a vector bundle p : E → B and trivializations ϕU and ϕV over U and V , with
U ∩ V 6= ∅. Then for any point x ∈ U ∩ V we have generators ι∗x(π∗V (γn)) and ι∗x(π∗U (γn)). We will call the
trivializations U and V compatible if these two generators are equal for all such x.

Lemma 2.2. A vector bundle p : E → B over a compact CW complex has a Thom class for Z coefficients
iff there is a trivialization such that all pairs of intersecting sets are compatible.
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Proof. Suppose E has a Thom class, denoted t. Fix some trivializing cover of E such that all the open sets are
connected. Let U ⊂ B be an element of our trivialization. Then ι∗U (t) is a generator of Hn(p−1(U), p−1(U)\
U) ∼= Z (by the relative suspension isomorphism). Note that π∗U (γn) is also a generator; we change the
trivialization ϕU if necessary (by a sign in one coordinate, say) to ensure that π∗U (γn) ∼= ι∗U (t). This will
ensure compatibility: let V ⊂ B be another element of the trivialization and x ∈ U ∩ V ; we have that
ιx(π∗U (γn)) = ιx(π∗V (γn)) = ι∗x(t).

Conversely, suppose that we have trivializing cover such that all intersecting pairs are compatible. We
will use a Mayer-Vietoris sequence to paste together the classes of the form π∗U (γn) into a Thom class: given
U and V in the trivializing cover, we get an exact sequence

Hn−1(p−1(U ∩ V ), U ∩ V ) Hn(p−1(U ∪ V ), U ∪ V ) Hn(p−1(U), U)⊕Hn(p−1(V ), V ) Hn(p−1(U ∩ V ), U ∩ V )

The first object is 0 by the suspension isomorphism, and the last arrow is 0 by compatibility. Therefore, we
have an isomorphism

Hn(p−1(U ∪ V ), U ∪ V ) ∼= Hn(p−1(U), U)⊕Hn(p−1(V ), V )

So we can paste together the classes as desired. By induction, we obtain a Thom class.

This notion of compatibility turns out to be the same as our usual notion of orientation: recall that an
orientation for a vector bundle p : E → B is a trivializing cover such that the transition functions ϕUV all
have positive determinant.

Lemma 2.3. A trivializing cover is an orientation iff all pairs of intersecting open sets are compatible.

Proof. Suppose that we have a trivializing open cover. Then for any intersecting elements U and V and
x ∈ U ∩ V , the following commutes:

p−1(U) U × Rn Rn

p−1(x)

p−1(V ) V × Rn Rn

ϕUV (x)

Since ϕUV (x)∗ is the identity if the determinant is positive and negation otherwise, we have that all pairs
are compatible iff the trivializing cover determines an orientation.

Combining these lemmas gives us the following theorem:

Theorem 2.4. A vector bundle p : E → B has a Thom class for singular cohomology with Z-coefficients iff
it is orientable.

In general, we say that a Thom class with respect to H∗(−;R) is an R-orientation, and call a bundle
possessing such a Thom class “R-orientable.”

Theorem 2.5. Let B be a finite CW -complex. Then any vector bundle over B is Z/2Z orientable.

Proof. Note that since Z/2Z only has one generator, all trivializations are compatible when working with
Z/2Z coefficients. Thus, any trivializing cover yields a Thom class as in the proof of Lemma 2.2.
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3 The Cohomology of CPn

We are now ready to calculate H∗(CPn;Z). The tautological vector bundle over CPn is a complex vector
bundle and therefore oriented; hence it has a Thom class. The total space (less the zero section) E0 in this
case is C2n \{0}, for which the cohomology Hk(E0) vanishes in degree k < 2n−1. Hence the Gysin sequence
tells us that the map Hk(CPn;Z)→ Hk+2(CPn;Z) given by c 7→ c ^ e is an isomorphism in degrees k < 2n,
where e is the Euler class. Consequently, we obtain

H∗(CPn;Z) ∼= Z[e]/en+1

Where e is degree 2. In the infinite case, H∗(CP∞;Z) ∼= Z[e].

4 The Cohomology of RPn

H∗(RPn) will require slightly more care. Again we consider the tautological bundle over RPn - but this is
not orientable. However, like any bundle, it is Z/2 orientable. By the same method as the last section,
we obtain that the Z/2Z-cohomology of RPn is Z/2Z[e]/en+1, where e is degree 1. In the infinite case,
H∗(RP∞;Z/2Z) = Z/2Z[e].

Now we will use this in order to deduce the the cohomology of RPn with Z coefficients. For this,
we will need to understand the cellular chain complex: there is one cell in each degree, and the attaching
map Sn → RPn is the standard double cover. The composition Sn → RPn → RPn/RPn−1 ∼= Sn factors
through the pinched sphere Sn ∨ Sn, with the induced map being idn ∨An, where An is the antipodal map.
In a diagram,

Sn RPn Sn

Sn ∨ Sn

µ idn∨An

With µ being the standard map of the h-cogroup structure on Sn. The map An has degree (−1)n+1, meaning
that our resulting cellular complex looks like:

Z Z Z Z · · ·0 2 0 2

From which we can calculate the cohomology groups of RPn. To calculate the ring structure, note that the
map Z→ Z/2Z induces a map of chain complexes:

Z Z Z Z · · ·

Z/2Z Z/2Z Z/2Z Z/2Z · · ·

0 2 0 2

0 0 0 0

Because the induced map H∗(RPn;Z)→ H∗(RPn;Z/2Z) is injective in all positive degrees (except n, when
n is odd), the cup product in the latter determines the cup product in the former. For even dimensional
projective space, we get

H∗(RP2n;Z) ∼= Z[x]/(2x, xn+1)

Where the degree of x is 2. For odd dimensional, we have to add in another variable for the top degree
generator, giving us

H∗(RP2n+1;Z) ∼= Z[x, y]/(2x, xn+1, xy, y2)

Where the degree of x is again 2 and the degree of y is 2n+ 1. In the infinite case,

H∗(RP∞;Z) ∼= Z[x]/(2x)

With x degree 2.
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