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1. Hyperbolic Models

1.1. Upper Half-Plane Model. Euclid’s Axioms provided a base for Euclidean geometry,
but for many, the fifth axiom seemed to not be as self-evident as the others. The parallel
axiom states that given any line L and a point p not on the line, there exists a unique line
parallel to L that passes through p. For centuries, mathematicians sought to prove this
axiom in terms of the other four; early in the 19th century, mathematicians discovered why
these efforts always came up short.[1] The parallel axiom is independent of the other axioms
and need not hold to produce a consistent system; if we drop it, one consistent geometry
that we can get is hyperbolic geometry.

This geometry crops up when we study the pseudosphere. Parametrizing the pseudosphere

as σ̃(v, w) = ( 1
w

cos v, 1
w

sin v,
√

1− 1
w2 − cosh−1w), we find that geodesics correspond to

straight lines and circular arcs intersecting the v axis.[3] We must have w 6= 0 to ensure that
the first fundamental form is defined. However, considering the square root, we see that the
curves are only real if w ≥ 1—this seems odd considering the geodesics exist for w ∈ (0, 1).
This motivates us to study the half-plane identified with H = {z ∈ C | Im(z) > 0} (where
z = v + iw identifies (v, w)), which is equipped with the same first fundamental form as the

pseudosphere, dv2+dw2

w2 .
This gives us the upper half-plane model of hyperbolic space. Using this model, we can

quickly show that the parallel axiom does not hold in H, as expected. We can also show that
there is a unique hyperbolic line segment connecting any two points, and we can compute

the length of this segment to be 2 tanh−1 |b−a|
|b−ā .1 This is the hyperbolic distance between the

two points, dH(a, b).
The last result that we are able to prove using this model is a formula for the area of a hy-

perbolic polygon, similar to the formula we have previously computed for spherical triangles.
These hyperbolic polygons have edges corresponding to the geodesics of the original pseu-
dosphere, so their edges are all arcs of circles centered on the v-axis and lines perpendicular
to the w-axis (with w > 0).

Denoting the internal angles of an n-sided hyperbolic polygon with α1, α2, . . . , αn, its
hyperbolic area A is (n − 2)π − α1 − · · · − αn. Interestingly, this area depends only on its
angles, not the polygon’s size or side lengths. The reason for this will become clear when we
discuss isometries.

1Here z̄ denotes the complex conjugate of z
1
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Figure 1. An example hyperbolic polygon with some interior angles labeled.
Reproduced from page 274 of Pressley.[3]

1.2. Poincaré Disc Model. The Poincaré disc model is another way of viewing hyperbolic
geometry. We define a transformation P(z) = z−i

z+i
that is well-defined at all points in H.

Under this transformation, the half-plane becomes D = {z ∈ C | |z| < 1}. If we equip this
with a fundamental form that ensures P is an isometry, then we have the Poincaré disc model

DP . It turns out that the first fundamental form of DP is 4(du2+dv2)
(1−v2−w2)2

; since this a multiple of

du2 +dv2, it preserves angles. Also, since P is an isometry, we can use it to create isometries
of DP ; for any isometry F of H, P ◦ F ◦ P−1 is an isometry of DP . We can quickly use this
model to translate isometries of H into isometries of DP .

First, we note that the hyperbolic lines of DP are lines and semicircles that perpendicularly
intersect the boundary of D. Thus, inversion in such semicircles and reflection across such
lines are isometries of DP . It is worth noting that because P is a complicated map, trivial
isometries of H may not correspond to trivial isometries of DP .2

Lastly, the Poincaré disc is a powerful model for proving some fundamental results in
hyperbolic trigonometry. The first is the “hyperbolic cosine rule”, which states that a hy-
perbolic triangle with sides A, B, C, and corresponding opposite angles α, β, γ, satisfy
coshC = coshA coshB − sinhA sinhB cos γ. Setting γ to be a right angle, this formula
gives us the hyperbolic version of the Pythagorean Theorem. Intuitively, it makes sense that
the Poincaré map would give us such results; since it is a conformal map with rotational
symmetry, it is perfectly suited to proving angle-related results such as these.

2One good example of this is rotation of the Poincaré disc, which is a trivial isometry in that model but
has very complicated effects for the half-plane model
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2. Isometries of H

Earlier we mentioned that the area of a hyperbolic polygon is dependent only on its internal
angles. As it turns out, this is due to the isometries of the hyperbolic plane. We know that
isometries must take geodesics to geodesics. Thus, isometries of H must take lines parallel to
the imaginary axis to other geodesics, and circular arcs centered on the real axis to vertical
lines or other similar arcs. This immediately gives us a few basic isometries:

(1) Translations along the real axis, given by Ta(z) = z + a, a ∈ R.
(2) Reflections across vertical geodesics, given by Ra(z) = 2a− z̄, a ∈ R.
(3) Dilations by a factor of a > 0, Da(z) = az.

These transformations are obviously isometries, since they all take lines perpendicular to
the v-axis to lines perpendicular to the v-axis, and circular arcs centered on the real axis to
other circular arcs centered on the real axis. However, this is not all the possible geodesic
transformations; is there an isometry that maps vertical lines to arc geodesics, or vice versa?
As it turns out, there is one more isometry that does this.

(4) Inversions in circles with centers on the real axis. Inverting around the circle with

center a on the real axis, radius r is given by Ia,r = a+ r2

z̄−a .

Similar to how every isometry in R3 can be decomposed into rotation and translation,
we can chain together a finite number of these four elementary isometries to create new
isometries of H.

We can show this fourth transformation is an isometry by proving that it preserves the
first fundamental form for a = 0, r = 1, and then showing that it is a composition of
Ta ◦Dr2 ◦ I0,1 ◦ T−a.3

We can use these isometries to prove that, for any point z1 on hyperbolic line l1H, and z2

on l2, there is an isometry of H that can be used to take l1 to l2 and z1 to z2. This result
allows us to prove that similar triangles are congruent in hyperbolic geometry, i.e. if two
triangles have the same interior angles in hyperbolic geometry, there is an isometry mapping
one to the other (and vice versa).

3. Hyperbolics in Nature

Intuitively, we understand that spherical geometry arises in natural settings where surface
area must be minimized—water droplets and bubbles are obvious examples. Knowing this,
it might not be surprising to find that hyperbolic geometry arises in settings where surface
area must be maximized; after all, the pseudosphere has a Gaussian curvature of −1 where
the unit sphere has K = 1. A common setting where area maximization occurs is whenever
an organism wants to maximize its exchange with a medium, for instance a leaf maximizing
its ability to exchange oxygen for carbon dioxide with air. As we alluded to in the half-plane
model discussion, these crinkled hyperbolic structures can only be extended so far.4 However,
we can still observe the tell-tale wrinkled structure expected of hyperbolic geometry. Below
are two natural examples of hyperbolic geometry arising from this “maximum exchange”
goal.

3As it turns out, this does not just map half-lines to half-lines and semicircles to semicircles. It maps
semicircles centered at a and the geodesic given by v = a to half-lines, and all other geodesics to semicircles.

4Specifically, Hilbert proved that surfaces with constant negative Gaussian curvature cannot be “geodesi-
cally complete,” i.e., they cannot have infinitely extensible geodesics.
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Figure 2. A holly leaf.[4] Trees photosynthesize, so they need to have high
leaf surface are for gas exchange.

Figure 3. A lettuce coral (Agaricia agaricites) exhibiting hyperbolic-shaped
“leafs.” Corals are large colonies of individual organisms, which rely on ex-
change with water for nutrients and the ions required to build their limestone
exoskeletons.[2] Thus, colony structure arises to maximize surface area, thereby
maximizing contact with water.
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4. Physical Model

I created a physical model of the hyperbolic plane using equilateral triangles cut out
of paper.5 The first thing to note is that this is a very approximate model; in reality,
the hyperbolic plane embedded in 3D would be smooth (of course, it cannot be extended
infinitely in Euclidean space). One could improve the precision of this by using a better
tiling scheme (I believe one can tile hexagons and heptagons as well), or by making the
plane using crochet. I have marked some geodesics in dark lines, and have noted the angles
at a few of their intersections. The geodesics do not all intersect, but this is due to the fact
that I did not extend the surface far enough (otherwise, there would be parallel lines, which
we know to be impossible). The marked angles and geodesic sections enclose a four-sided
polygon. The internal angle of this polygon is only 300 degrees, which is consistent with
the fact that hyperbolic polygons have a total internal angle of less than 360 degrees. One
thing that this model does not do well is that there are straight components of the geodesics
across the triangle faces. In reality, these geodesics would not go straight across the face,
suddenly bending at intersections. This likely impacts the interior angles of the polygon as
well. Lastly, note that every vertex on the plane can be viewed locally as a saddle (just
considering the 7 neighboring hexagons). This reflects the fact that the idealized version
of this plane has a constant negative Gaussian curvature, resulting in every point being a
saddle point (see the discussion in 8.2).

Figure 4. The paper triangle hyperbolic plane model. Note the geodesics
written in dark lines. Also note that every vertex looks like a saddle

5Sorry Professor, I had said that I was going to make the string model of a hyperboloid of one sheet. I
tried to 3D print the parts but it didn’t work, so I ended up scrapping it and going with this.
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Figure 5. The polygon’s boundary highlighted. The sum of the interior
angles is 60 + 60 + 60 + 120 = 300 degrees, which is less than the sum of
internal angles for a Euclidean polygon.
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