
MATH4540 Mini Project 1

Vector Bundles of Surfaces

Zichen Wang

May 15, 2022

A central theme of differential geometry is to study geometric objects that are locally Euclidean.
As we have seen in this course, every point on a smooth surface can be approximated by its
tangent plane consisting of the first order derivatives, while the second order derivatives tell us the
Gaussian curvature, that is, how much the surface deviates from the tangent plane. In this sense,
the tangential space is intrinsic to the geometric object. Although with the ambient space R3 we
can clearly tell the difference between different tangent planes at different points, as a bug on the
surface we could hardly distinguish them without referring to the position we are at. This leads us
to the notion of the tangent bundle.

Definition 1. Given a surface S, the tangent bundle of the surface TS = {(p, v) : p ∈ S, v ∈ TpS}

Instead of directly taking the union of all tangent spaces, we incorporate the position prior to
each tangent vector. Intuitively, this can be understood as tying a string of tangent vectors at each
point of the surface. If the surface is R2, then the tangent space at each point is also R2 (for now
imagine embedding the plane into R3), and the tangent bundle TR2 ∼= R4. Similarly, TR3 ∼= R6.

In general, it is not favorable to define our tangent vectors based on the ambient space, as our
choice of the ambient space can be arbitrary. One natural idea is to generalize how we defined
tangent vectors as derivatives of curves on the surface.

Definition 2. Given smooth surfaces S1 and S2, and a smooth map ϕ : S1 → S2, the differential
of ϕ is

dϕ :TS1 → TS2

(p, α′(0)) → (ϕ(p), (ϕ ◦ α)′(0))

where α is a curve on S1 with α(0) = p.

Thus one way to understand tangent vectors is to use patches. Let S1 be a subset of the
Euclidean space that the surface S2 is defined on. Then we can obtain the tangent space of S2 by
calculating the differential of the patch.

Definition 3. A section of a tangent bundle is a map s : S → TS such that projection of s(p) back
to S is p itself for any p ∈ S.

In other words, the section is a vector field that assigns each point on the surface a tangent
vector. It got its name from the intuition that we can “cut” the strings of the tangent bundles to
form a section.

1



The field of geometry studies properties such as length, angles, and curvatures, all of which
require a metric. Essentially, the first fundamental form is the metric. Given two tangent vectors
at a point, the first fundamental form outputs the inner product of the vectors. As the surface is
locally Euclidean, it is natural to think of the tangent space at a point as a vector space. This suits
well that the inner product should be bilinear.

Definition 4. Given a vector space V , the vector space of all real-valued linear functions on V is
called the dual of V , denoted by V ∗.

Definition 5. Given a surface S, the cotangent bundle T ∗S = {(p, v) : p ∈ S, v ∈ T ∗
p S}

Definition 6. Given a smooth function f : V → R, the differential of f at p is df ∈ V ∗ such that

dfp(v) = lim
t→0

f(p+ tv)− f(p)

t
for any v

Note that this definition can be seen as a special case of definition 2, with ϕ = f and S2 degraded
to the real line.

Theorem 1. If V is a finite dimensional vector space, and ⟨·, ·⟩ is a non-degenerate inner product,
then we have the isomorphism

T :V → V ∗

v → ⟨v, ·⟩

Corollary 1. The gradient of a smooth function f on the surface is the section of the tangent bundle
corresponding to the differential of f under the isomorphism specified by the first fundamental form.

We see that the differential is decided by f whereas the gradient further depends on the metric
that we choose. Given the first fundamental form as the metric, we can specify the isomorphism
between TS and T ∗S. That is, for any curve γ ⊆ S which passes p when t = 0,

⟨∇Sf, γ
′(0)⟩ = d

dt
f(γ(0))

= lim
t→0

f(γ(t))− f(γ(0))

t

= df(γ′(0))

Thus, by Theorem 1, at each point on the surface we obtain the gradient as a tangent vector at
that point, and together the gradients form a section of the tangent bundle.

One final remark is that when we discuss tangent vectors, we said that it is conducive to think
of surface tangent vectors corresponding to tangent vectors in patches. The problem is that this
still does not avoid the arbitrary choice of our patches. A solution to this is to instead think of
not curves in patches, but functions along curves. Thus we have tangent vectors as real-valued
functions from the set of all smooth functions to R.

α′(0)f =
d(f ◦ α)

dt

∣∣∣∣
t=0

2



Optimization using Gradient Descent

Zichen Wang

May 15, 2022

Gradient descent has been one of the most commonly used technique by computer scientists in
all sorts of optimization problems. Other than the already abundant blogs on this amazing hack, I
would like to present you some more advanced usage of gradient descent that you might not have
seen before.

1 ML101 Intro to Gradient Descent

Below is the pseudo-code of the simplest gradient decent algorithm. It take only a few lines of
codes!

Algorithm 1 Gradient Descend

starting at x0

for t = 1, ..., T do
xt ← xt−1 − η∇fx

end for
return x = argmin{f(x0), ..., f(xT )}

Given a function f , our goal is to find a point that minimizes f . To do this, we follow a greedy
approach: repeatedly take small steps that “descend” us to a position with smaller function value.
A few things to notice here

• At each step, we follow the direction of the gradient at our current position. As I showed in
my last paper, the negative gradient gives the direction that the function value decreases the
“fastest”.

• The step size of each each small step is reflected in the parameter η. If we take a large step
every time, then we might reach the destination faster, but we are also much more susceptible
to overreach the destination and get a bad approximation.

• T is the total number of small steps we will take. It directly decides how fast (or slow...) our
algorithm will be. Again, if we take too few steps, then the algorithm might end before we
reach our destination. But couldn’t we just stop whenever we repeatedly see the approximately
same number? Sadly, this seemingly convergence might result from that we are following a
path that descends very slowly, and we could not tell if we have reached the optimal position
yet. The good news, however, is that if we assume good enough properties of the function
(convexity, Lipschitz, etc.), then we can calculate a theoretical upper bound of T , and this
upper bound does not depend on the dimension of the input.

1



Thus, although the algorithm is extremely simple, the secret of a good performance of
the gradient descent actually lies in the clever choice of these parameters. In practice,
gradient descend often serve as a symbol of progress for the training of machine learning models:
f would be a loss function that measures how poorly the model fits the training data, and the
input of f are different parameter settings for the model. If we want our model to have better
performances, it is natural to add a tons of parameters to reflect all aspects of the training data.
This causes the dimension of the input of f to be very large.

2 Choosing the Gradient

As you might have notices, I placed a quotation mark when I said that the gradient gives the
optimal descending direction. The formal definition of the gradient requires an isomorphism, often
in the form of an inner product, between the tangent bundle and the cotangent bundle. Normally
we would use the 2-norm, so the gradient gives the local optimal direction. However, if we have
some prior knowledge of the distribution of training data, then we can modify the inner product to
accelerate our training. For example, if we are doing gradient descend on f(x) = 4x2 + y2, whose
level curves would be a family of ellipses, then the negative gradient would direct not to the origin
(also the minimum point), but the major axis of the ellipse. Thus we would follow a zig-zag path
along the major axis (since it is unlikely to stop exactly on the axis), repeatedly overshooting in one
direction and then correcting it in the next iteration. If, instead, we take the gradient with respect
to the inner product ⟨u, v⟩ = 2u1v1 + u2v2 (suppose the major axis points to the y direction), we
give more weight to changes in the x direction. This forces the x component to stabilize before the
gradient descent even ends, so we would now descend along the y axis.

Figure 1: 2-norm
Figure 2: non-standard norm

3 The Dog Chasing Its Tail

A common dilemma in many computer science problems is that we want our model to tell us
something about the input data, but at the same time we want to have prior knowledge of the
input data so that our model will have much better performance. At certain points this all sounds
self-contradictory, just like the classic question of whether the chicken came first or the egg came
first. In the case of the gradient descent, we see this in the choice of parameters and also the use
of non-standard inner products. Perhaps one day we will have a better way to accommodate this,
but for now, the dog keeps on chasing its tail.

2


