
Morgan Weiler Research Statement, Fall 2023

1 Topology and dynamics in symplectic and contact geometry

My research is in symplectic and contact geometry, focusing on connections with low-dimensional
topology, dynamics, and complex geometry. Symplectic and contact geometry occupy an interme-
diate position between smooth topology and complex geometry. On the smooth side, symplectic
and contact manifolds have no local invariants such as curvature, and depending on the manifold,
their automorphisms can be what we call “flexible,” preserving only volume. Yet many symplec-
tic/contact phenomena are “rigid,” i.e., determined globally by local behavior just as holomorphic
functions are. Rigidity arises because minimal “J-holomorphic” submanifolds are the source of
the major invariants. Exploiting the flexibility-rigidity spectrum has been especially productive in
low dimensions: see Gompf’s topological constructions of symplectic four-manifolds as evidence of
flexibility (e.g. in [Gom95, Gom98]) and Taubes’ characterization of the Seiberg-Witten invariants
via symplectic submanifolds in [Tau94, Tau95, Tau96] as emblematic of rigidity.

The unifying theme of my work is investigating the smooth-symplectic-complex interplay in
dimensions two and four, with a strong emphasis on computation. In the intermediate dimension
three, I study the relationship between contact geometry and topology. In this research statement
I will describe my recent work, following three major threads organized by dimension, as follows.

• Research program 1: 4D symplectic embeddings and the toric staircases conjecture (see §2).
In [MMW22, MPW23] I proved a foundational case of a conjecture of Cristofaro-Gardiner–
Holm–Mandini–Pires that posits the symplectic embeddings into a 4D toric variety are highly
controlled by its algebraic geometry and number theory. This work is ongoing.

• Research program 2: contact invariants and 3D topology (see §3). There is a rich two
way relationship between contact forms and topology in dimension three. In one direction,
I use topological tools such as open books, knot cobordisms, and circle bundles to compute
contact invariants (see my joint work [Wei21, NW20, NW23a, NW23b, RWY] and future
work in §3.4.1). Conversely, it is expected that the algebraic structure of these invariants
characterizes the smooth topology of the underlying manifold, and in this direction I outline
a long term project towards the L-space conjecture in §3.4.2.

• Research program 3: 2D dynamics via contact geometry (see §4). In two dimensions, the
smooth-symplectic-complex hierarchy collapses. Recently, focus has turned to applications
in dynamics. In [Wei21, NW23b] I prove quantitative existence for periodic orbits of area-
preserving surface maps with checkable hypotheses.

I have taken a broad perspective: my work ranges from theoretical foundations to writing computer
programs. This breadth is due to a fundamental tension intrisic to symplectic and contact geometry.
Invariants are built from counts of “J-holomorphic curves,” which are solutions to a nonlinear
Cauchy-Riemann equation. The counts are defined for generic data, but it is only possible to
actually compute the numbers in highly symmetric, non-generic settings. Bridging the gap requires
that I revisit the invariants’ foundations, while computations require combinatorics.

One consequence of taking my approach is that I have built an ever-growing list of projects
suitable for a range of students, from undergraduate through the Ph.D. level. These are described
concretely in each section. Furthermore, I have written two papers with undergraduates.
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2 Research program 1: 4D symplectic embeddings and the toric
staircases conjecture

A symplectic form is a closed smooth nondegenerate two-form ω on a 2n-dimensional manifold.

Its volume form is ω∧n. A symplectic embedding is an embedding, denoted X
s
↪→ X ′, which

identifies the symplectic forms. Symplectic embeddings are at the heart of the rigidity-flexibility
dichotomy, providing a valuable source of numerical evidence in the field.

Gromov proved nonsqueezing in [Gro85], the groundbreaking result that a 2n-ball of radius r
in Cn can only embed symplectically into a cylinder D2(R)×Cn−1 if r ≤ R. Nonsqueezing is rigid,
as the ball has finite volume while the cylinder’s volume is infinite. Conversely, many embedding
problems are flexible: [Bir97], [MS12]. Characterizing embeddings is very difficult even for some of
the simplest symplectic manifolds [McD09, McD11]. I study embeddings of toric domains, which
are a large yet still tractable class of symplectic four-manifolds. They are also highly algebraic.

Definition 2.1. For Ω a region in the first quadrant of R2, the toric domain (XΩ, ω0) is

XΩ :=
{
(z1, z2) ∈ C2

∣∣ (π|z1|2, π|z2|2) ∈ Ω
}
, ω0 = dx1 ∧ dy1 + dx2 ∧ dy2.

If Ω is convex, then XΩ is convex. If Ω is a polygon whose sides have rational slopes, XΩ is finite
type. We call Ω the moment image of XΩ. See Figure 1 for key examples.
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(a, 0)

(a) Ball B(a)

(0, b)

(a, 0)

(b) Ellipsoid E(a, b)

(0, b) (a, b)

(a, 0)

(c) Polydisk P (a, b)

(b, 1-b)(0, 1-b)

(1, 0)

(d) Xb

Figure 1: Moment images Ω, labeled by their toric domain XΩ. All are convex.

Because XΩ
s
↪→ XcΩ′ if c >> 0, we are interested in the most volume-filling and simplest

nontrivial embeddings, captured by the ellipsoid embedding function

cXΩ
(a) := inf

{
c
∣∣∣ (E(a, 1), ω0)

s
↪→ (XcΩ, ω0)

}
.

McDuff and Schlenk in [MS12] found cB(1) has a surprising structure called an infinite staircase:
cB(1) is either smooth or piecewise linear, with infinitely many nonsmooth points accumulating
to a finite limit. Further researchers studied countable families of cXΩ

, identifying and ruling out
infinite staircases: [CFS17, Ush19, CHMP20, Cri]. But we still do not know why they appear.

Project 2.2. Infinite staircases are both plentiful and highly non-generic. Can we characterize
manifolds with infinite staircases?

The unifying toric staircases conjecture from [CHMP20] is an entry point to Project 2.2. It
asserts that (up to scale) there are exactly twelve convex polygons Ω with corners in Q2 and cXΩ

having an infinite staircase. These twelve XΩ all have circle actions on their boundary, and when
reduced by this action they are symplectomorphic to an embedded submanifold of some complex
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projective space (making the reduced manifolds Fano). All evidence suggests the toric staircases
conjecture is true. However, it is false if the “corners in Q2” hypothesis is removed. In fact,
uncountably many X have staircases.

Theorem 2.3 ([MMW22, MPW23]). The CGHMP conjecture holds for the Xb.

• In addition to b = 1/3, identified in [CHMP20], there is a bi-infinite family of Cantor sets of
quadratic irrational b for which cXb

has an infinite staircase.

• Membership in this family is controlled by the continued fraction of the solution to a simple
quadratic equation in b. New members are generated from old following a Stern-Brocot tree.

Theorem 2.3 suggests it is the number theory of the sizes of the tori making up XΩ which truly
controls staircases. It is the first classification of cX for a continuous family of X. Work in progress
with Holm, Magill, and Pires will extend to polydisks P (1, b), with b = 1/3 replaced by b = 1.

Cristofaro-Gardiner, Magill, and McDuff are working to prove that if ∂Ω ever has irrational
slope, cXΩ

has no infinite staircase. I will build on their work towards an answer to Project 2.2:

Project 2.4. If cXΩ
has an infinite staircase, then XΩ is finite type and ∂Ω has the same set of

slopes as one of the twelve in the CGHMP conjecture.

Project 2.4 is inspired by [BFMS21], in which the authors prove that a hyperbolic three-manifold
containing infinitely many totally geodesic submanifolds must be arithmetic (i.e., controlled by
number theory). One side of the analogy is that “steps” in an infinite staircase correspond to
minimal surfaces in XΩ; the other side is that Fano toric domains are highly controlled by the
number theory of the lengths and slopes of the sides of ∂Ω.

Beyond toric domains, there are other natural candidates for X whose symplectic forms come
from number theory or algebraic geometry. Examples whose cX I plan to compute include quotient
symplectic forms on rational homology balls bounded by lens spaces, Hilbert modular varieties, and
the space of flags on C3 (which is six-dimensional but highly symmetric), all of which generalize
4D toric domains in different ways.

2.1 Undergraduate research

I advised summer research in 2020 (under Jo Nelson) and 2022 (as lead organizer). In 2020, we
considered polydisk embeddings, extending [Hut16a, Thm. 1.5]:

Theorem 2.5 ([DNN+22]). If 1 ≤ a ≤ 3
2 , k ≥ 3, P (a, 1)

s
↪→ E

(
c2k+1

2 , c
)
⇔ P (a, 1) ⊂ E

(
c2k+1

2 , c
)
.

Our proof used obstructions derived from the genus of minimal surfaces in the cobordism induced
by the embedding. In 2022, we studied ellipsoid embedding functions with polydisk targets.

Theorem 2.6 ( [FHM+22]). Setting β = 6+5
√
30

12 , the function cP (β,1) has an infinite staircase.

Usher found countably many cP (β,1) with an infinite staircase [Ush19], each with a counterpart
staircase cXb

[BHM+21, MM21]. Theorem 2.6 was the main evidence for my work in progress with
Magill and Pires on proving Theorem 2.3 for the polydisk.

The proof of Theorem 2.3 does not compute the entire function cHb
, which is particularly

mysterious past the accumulation point. Future work with undergraduates will compute cXΩ
when

Ω is a pentagon or hexagon, which will provide evidence for Project 2.4. I also hope to optimize
the algorithms for genus bounds used in [DNN+22].
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3 Research program 2: Contact invariants and 3D topology

A contact form is a smooth one-form λ on an odd-dimensional manifold whose kernel hyperplane
field is nonintegrable. Its volume form is λ∧ (dλ)∧n. An essential feature of a contact form is its
Reeb vector field R, the unique vector field in the kernel of dλ with λ(R) = 1. Its flow preserves
λ, and its closed orbits are called Reeb orbits.

Every three-manifold Y carries many contact forms. Their Reeb dynamics detect the topology
of Y . For example, every Reeb vector field on a three-manifold has a closed orbit ([Tau07]), and
having exactly two Reeb orbits guarantees that Y is a lens space [HT09, CGHHL21].

Figure 2: A 3D sketch of J-
holomorphic curves defining
the ECH differential.

Hutchings’ embedded contact homology (“ECH”) is a
Floer-type homology theory for a contact three-manifold (Y, λ).
ECH is generated by certain finite sets of Reeb orbits, and its differ-
ential is defined by counting “J-holomorphic” (or “pseudoholomor-
phic”) curves in R×Y asymptotic to cylinders over those orbits (Fig.
2). J-holomorphic curves are solutions to a nonlinear Cauchy-
Riemann equation on T (R×Y ). If X is a cobordism from Y+ to Y−,
it induces a cobordism map on their homologies.1 ECH is invariant
of λ and isomorphic to Seiberg-Witten Floer homology (“HM”)
and Heegaard Floer homology (“HF”) [Tau10, KLT, CGH11].

HM and HF have significant strengths. ECH cobordism maps
are defined via HM, while HF is more easily computable. The
tripartite nature of the invariant is a feature, not a bug. Progress,
such as Taubes’ proof of the Weinstein conjecture, relies on porting
tools and intuition from one version to another.

In §3.1 I explain my computations of ECH in varying topolog-
ical settings. In §3.2 I explain my work on ECH capacities. §3.3 is dedicated to the ECH knot
filtration and bounding symplectic knot cobordism volume. Finally, §3.4 introduces future work on
computing ECH capacities within HF and characterizing L-spaces via ECH capacities.

3.1 Computing ECH

By far the most is known about λ which are invariant under a T 2 action. Much less is known when
λ is only S1-invariant. The simplest such class of examples are prequantization bundles, which
are circle bundles over a surface with a contact form whose Reeb flow equals the fiber circle action.

Theorem 3.1 ([NW20]). Let (Y, λ) be a prequantization bundle. Then ECH∗(Y, kerλ) is the
exterior algebra of the homology of the surface at the level of chain complexes.

Theorem 3.1 first appeared in a Z2-graded form in the unpublished thesis of Farris [Far11];
Nelson and I completed the J-holomorphic curve analysis and proved the Z-graded version, using
HM. Ferreira-Ramos used Theorem 3.1 to compute the “ECH capacities” (see §3.2) of the disk
cotangent bundles of S2 and RP 2 [FR21], and Chen used it to compute further examples [Che23].

Prequantization orbibundles are precisely what they sound like – prequantization bundles
over orbifolds. Some arise from “open book decompositions” by [CH13]. An open book decom-
position is a fibration over S1 of a three-manifold minus a link (the binding) by Seifert surfaces

1ECH cobordisms are backwards: ∂X = Y+ − Y−, and the map goes from ECH(Y+) → ECH(Y−).
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(the pages). A contact form is adapted to an open book if its Reeb flow is transverse to the pages
and tangent to the binding. A prequantization orbibundle arises when the Reeb flow is periodic.

Theorem 3.2 ([NW23a, NW23b]). The ECH chain complex of the prequantization orbibundle λ
adapted to an open book decomposition of S3 with binding T (p, q), p, q > 0, is the exterior algebra of
an orbifold Morse chain complex on the base when p > 2, and when p = 2 can have no differential.

Applications of Theorem 3.2 to surface dynamics appear in §4.

3.2 ECH capacities

One of the most useful parts of the ECH package is its ability to capture length homologically.

Definition 3.3 ([Hut11]). The ECH spectrum of (Y, λ) is

0 = c0(Y, λ) < c1(Y, λ) ≤ c2(Y, λ) ≤ · · · ≤ ∞,

where ck(Y, λ) is the smallest L needed to represent a certain homology class of grading 2k using
sets of Reeb orbits of length at most L. The ECH capacities of a symplectic filling (X,ω) of
(Y, λ) are ck(X,ω) = ck(Y, λ).

ECH capacities obstruct symplectic embeddings,

φ : X
s
↪→ X ′ ⇐⇒ ck(X,ω) ≤ ck(X

′, ω′) for all k, (3.1)

and more generally the ECH spectrum obstructs symplectic cobordisms. The idea is that ck(X
′, ω′)−

ck(X,ω) is at least the area of a J-holomorphic curve in the cobordism X ′ \φ(X), which must exist
by properties of the ECH cobordism map [HT13].

The ECH capacities of toric domains are algorithmic. My work in §2 in part uses computer
programs to compute them up to k = 25, 000. But identifying the curves counted by the ECH
cobordism map or “U -map” (yet another count of curves, determining the specific grading 2k
homology class defining ck) requires passing through extremely complicated work of Taubes [Tau02].
They should be readily visible in the moment image of a toric domain as “tropical curves,” a
combinatorial projection of the true J-holomorphic curves.

Project 3.4. Recently, McDuff-Siegel have found the curves underlying ECH capacities when Ω is
one of CGHMP’s Fano domains [MS23]. Extend their work to build a tropical ECH chain complex
of a toric domain, including its differential, U -map, and cobordism maps.

Finding evidence for Project 3.4 in the Hirzebruch surfaces appearing in Theorem 2.3 is work
in progress with Holm, Magill, and Pires.

With Vinicius Ramos, I am completing the foundations of the combinatorial ECH chain complex
of toric domains [RW], using [Tau02, Cho16]. Because the curves are still not explicit in [RW],
Project 3.4 will provide a useful counterpoint. I hope it will serve as a motivating overarching
program for a graduate student, because it combines tools from several fields in a new way.

Project 2.4 is also related to ECH capacities. The limit of ck(X)2/(4k) is the symplectic
volume of X by [CHR15]. My computational work towards Theorem 2.3 provides strong evidence
that infinite staircases can only occur when the subleading asymptotics ck(X)−

√
4k vol(X) do not

converge, which includes the case of XΩ finite type.
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Finally, my work with Ramos will make it easy to compute ECH “barcodes.” Barcodes, derived
from topological data analysis, encode the lengths of Reeb orbits in the ECH chain complex. They
are extremely useful in symplectic and contact geometry (see [PRSZ20]). I want to run an REU
soon with the goal of writing and publishing code to compute ECH barcodes for toric domains.

3.3 Knots in ECH

One of the strengths of ECH is that it realizes HM/HF/ECH generators as multisets of embedded
circles, which have not only a length but a link type.

My 2019 thesis investigated knot-filtered ECH, a spectral invariant measuring the linking
of ECH generators with a fixed Reeb orbit. It was introduced by Hutchings in [Hut16b] when
H1(Y ) = 0. If B is a Reeb orbit and θ ∈ R \ Q is a parameter depending on the linearized Reeb
flow near B, ECHℓ(Y, kerλ,B, θ) is the homology of the subcomplex generated by orbit sets of
linking number at most ℓ with B, modified by θ if B appears in the orbit set. I proved:

Theorem 3.5 ([Wei21]). If b1(Y ) = 0, ECHℓ(Y, kerλ,B, θ) is defined and independent of λ, J .

I applied Theorem 3.5 to lens spaces Y = L(p, p− 1) with B a component of the image of the
Hopf link under the quotient L(p, p− 1) = S3/Zp, computed their knot-filtered ECH, and proved:

Theorem 3.6 ([Wei21]). Contact forms on L(p, p − 1) adapted to open books with annulus pages
and with certain irrational binding “rotation numbers” must have a third Reeb orbit γ. The length
of γ is bounded from above by a function of its linking numbers with the binding components.

Bechara Senior–Hryniewicz–Salomão have proved a version of Theorem 3.6 for more general
(Y, λ) [BHS21] under a genericity hypothesis on λ.

With Nelson, I extended the definition and invariance of the knot filtration to some contact
forms with θ ∈ Q, including those in Theorem 3.2: see [NW23a]. A formula for the knot filtration
value of combinatorial ECH generators for toric contact forms will appear in [RW].

The knot filtration also refines the ck to obstruct cobordisms. Denote by ck,ℓ(Y, λ,B) the
shortest length of a Reeb orbit set representing the grading 2k homology class (which is unique for
S3) with knot filtration at most ℓ (fixing λ fixes θ). If X is a symplectic cobordism from (Y+, λ+)
to (Y−, λ−) and Σ ⊂ X is a symplectic cobordism from B+ to B−, we call (X,Σ) a relative
symplectic cobordism from (Y+, λ+, B+) to (Y−, λ−, B−). With Roy and Yao, I am proving:

Theorem (in progress) 3.7 ([RWY]). • If (X,Σ) is a relative symplectic cobordism from
(Y+, λ+, B+) to (Y−, λ−, B−), then ck,ℓ(Y+, λ+, B+) ≥ ck,ℓ(Y−, λ−, B−).

• The smallest a with int(P (12/5, 1))
s
↪→ B(a) is a = 16/5 [Hut16a], but if the complement

of the embedding is a relative symplectic cobordism with B+ = B(a) ∩ (C × {0}) and B− =
P (12/5, 1) ∩ (C× {0}) (both are Reeb orbits for λ = 1

2

∑
i=1,2 xi dyi − yi dxi), then a ≥ 17/5.

Etnyre and Golla have proved that T (p, q) and T (p′, q′) are cobordant in a weaker sense if p ≥ p′

and q ≥ q′ [EG22]; we will investigate whether this condition characterizes relative symplectic
cobordism as well, and moreover identify the least possible volume for such cobordisms. I expect
this work to inspire many projects for undergraduate summer research.
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3.4 Directions for future work

The following projects reflect my overarching goal of interpreting features of HF and HM in ECH
and vice versa. They will provide motivation for new research themes over the next several years.

3.4.1 HF capacities

Colin, Ghiggini, and Honda proved ECH and HF are isomorphic using open book decompositions,
pioneering a method for computing ECH using the topological data of an open book [CGH10]. In
[CHM+21], Cristofaro-Gardiner–Humiliére–Mak–Seyfaddini–Smith defined the “link spectral in-
variant” in a version of HF for a mapping torus of a map isotopic to the identity. Chen proved
that the link spectral invariant is quasimorphic to a variant of the ECH spectrum called the “PFH
spectral invariants” [Che22]. Open books are mapping tori away from the binding, motivating:

Project 3.8. Define a spectral invariant in HF using open book decompositions (it is well-known
how to compute standard HF from an open book), and prove it is quasimorphic to the ECH spectrum.

Project 3.8 will provide ongoing motivation over the next several years. Understanding the case
of the positive torus knots discussed in §3.1 is the first place I will start, after which I will generalize
to other open books.

3.4.2 L-spaces and ECH capacities

A rational homology three-sphere Y is an L-space if a reduced version of its HF has the same rank
as its H1. The “L-space conjecture” posits that being an L-space is equivalent to a topological
condition – not carrying a taut foliation – and an algebraic one – having a non-left-orderable
fundamental group [BGW13]. The same reduction appearing in HF can be performed using J-
holomorphic curves in ECH, so it’s natural to ask if being an L-space is equivalent to some Reeb
dynamical condition.

This seems very hard to approach, as ECH is most useful when either the topology or Reeb
dynamics is very simple, and non-lens-space L-spaces are far more complicated topologically and
dynamically than any manifold whose ECH is well-understood. But there is hope in the work of Lin-
Lipnowski on computing a key part of HM using a lower bound on the first eigenvalue of the Hodge-
Laplacian [LL22] on a hyperbolic rational homology sphere. The ECH spectrum echoes the Laplace
spectrum of a hyperbolic surface, exemplified in the volume property limk→∞ ck(Y, λ)

2/(2k) =
vol(Y, λ) proved in [CHR15]. In analogy to Lin-Lipnowski’s work, I ask:

Project 3.9. If Y carries a contact form λ that is “dynamically convex” and satisfies the lower
bound c1(Y, λ)

2/ vol(Y, λ) > 2, must Y be an L-space?

Dynamical convexity is a technical condition we must assume by [ABHSa18], analogous to
hyperbolicity. The idea is that L-spaces either have two Reeb orbits and are lens spaces (see
[CDR23]), or infinitely many Reeb orbits which are cancelled in ECH by many differentials. If c1
is large, either there are few short Reeb orbits (first scenario), or many J-holomorphic curves to
cancel all short orbits (second scenario). Thus both scenarios give us hope that Y has very simple
ECH, meaning Y is an L-space.
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4 Research program 3: 2D dynamics via contact geometry

In my thesis [Wei21, Wei23] I used Theorem 3.6 to prove a quantitative version of the historic
Poincaré-Birkhoff theorem that area-preserving diffeomorphisms of the annulus which rotate the
boundaries in opposite directions have fixed points.2

Corollary 4.1 ([Wei21, Wei23]). Let ψ be an area-preserving diffeomorphism of the annulus A
which rotates a collar near both boundaries by 2πy+ (both measured clockwise). If y+ ̸= V(ψ),
where V(ψ) is the “Calabi invariant” of ψ, then ψ has a periodic orbit γ.

The utility of Corollary 4.1 is that its hypotheses only require computing y+ and V(ψ).

Figure 3: When ψ(z) = z,
f(z) equals the shaded area.

Corollary 4.1 follows from Theorem 4.2 below, which requires
some setup. The action function of ψ is f : A → R with df =
ψ∗β − β, where β is a primitive for the area form, and f along
the outer boundary equals y+. The action function measures local
twisting via area: see Figure 3 for the case of a fixed point. The
mean action of a periodic orbit γ of ψ is its average value on γ.

The action function has a global average, theCalabi invariant,

V(ψ) =
∫
A fω∫
A ω

,

a homomorphism to the reals which is usually only defined for
Hamiltonian symplectomorphisms; the extension appearing here is
due to Hutchings [Hut16b] in the case of the disk.

Theorem 4.2 ([Wei21, Wei23]). Given ψ as in the first sentence
of Corollary 4.1, and in addition V(ψ) < y+, then ψ has a periodic
orbit whose mean action is less than V(ψ).

Theorem 4.2 follows from Theorem 3.6 using open book decompositions of lens spaces with
annulus pages. A contact form λ adapted to an open book induces a diffeomorphism of the page
called the return map, which sends a point to its image under the Reeb flow for the shortest
amount of time that point takes to return to the page. We can reverse this setup and construct
λ with ψ as its return map. The diffeomorphism invariance of ECH allows us to estimate the
quantities relevant to Theorem 4.2 using a simplified version of λ, as the diffeomorphism type of
the resulting manifold depends only on the isotopy class and boundary rotation of ψ.

Theorem 3.6 was proved by combining computations using two contact forms on the boundaries
of two different ellipsoids. Jonathan Trejos, a Ph.D. student at IMPA, is currently working out the
ECH chain complex for “toric lens spaces,” which will enable the following project:

Project 4.3. (With graduate students.) Weaken the hypothesis on boundary rotation in Theorem
4.2.

With Nelson, I am extending [Wei21, Wei23] to other surfaces. (See [PP22] for a similar result
under a genericity assumption.)

2[Wei23] is a corrigendum to [Wei21] and is under review; results attributed solely to [Wei21] are not affected by
the correction. Feel free to contact me with any questions.
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Theorem 4.4 ([NW23b]). Let ψ be an area-preserving diffeomorphism of a genus (p− 1)(q− 1)/2
surface with one boundary component in a certain isotopy class depending on p and q, whose action
function is positive, and which is rotation by ≈ 2π/pq near the boundary. Then ψ has a periodic
orbit whose mean action is less than

√
V(ψ)/pq.

The restriction on the isotopy class of ψ arises from requiring a contact form to which we can
apply Theorem 3.2. Further computations of ECH will allow us to consider a wider variety of
surfaces and isotopy classes of diffeomorphisms.

This work has influenced Project 3.8, which can be interpreted as a reverse project, that is,
computing ECH spectral invariants from the return map, rather than using ECH spectral invariants
to study the return map as we do here.
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