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1. Introduction: pseudoholomorphic curves in low dimensions

My research is low-dimensional contact and symplectic geometry with applications to dynamics.
Contact and symplectic geometry provide the framework for classical mechanics, modeling planetary
motion and electromagnetism, and connect many fields of mathematics. My research goals are:

• expanding the topological and geometric settings in which we can compute the pseudoholo-
morphic curve invariants central to modern contact and symplectic geometry,

• optimizing these computations to discover new phenomena, and
• applying these computations to 4D symplectic embedding problems, the topology of Reeb
orbits in 3D, the 4D Viterbo conjecture, and 2D dynamics.

My work has connections with complex algebraic geomety, nonlinear PDE, low-dimensional topol-
ogy, knot theory, number theory, Ehrhart theory, and topological quantum field theory; some
projects require extensive computer programming. With my coauthors, I have worked on:

• Symplectic embeddings §2: I proved a foundational case of a conjecture of Cristofaro-
Gardiner–Holm–Mandini–Pires arising from Gromov nonsqueezing in [MMW22, MPW].

• New computations of ECH §3: I computed the embedded contact homology of all contact
forms with free circle actions in [NW20] (used by Ferreira-Ramos in [FR21]), and of a family
of contact forms with effective actions in [NW].

• Knot filtration §4: In [Wei21] I generalized the knot filtration on embedded contact homol-
ogy, using it to find periodic orbits of surface symplectomorphisms. Part of this work was
extended by Bechara Senior-Hryniewicz-Salomaõ [BHS21].

• Mentorship §2.3: I mentored two undergraduate summer research projects [DNN+, FHM+22].

Symplectic geometry was revolutionized in the 1980s, when Gromov introduced pseudoholo-
morphic curves in [Gro85] to prove nonsqueezing, which showed that symplectic geometry is
strikingly different from volume-preserving geometry. A year later, Floer used pseudoholomorphic
curves to solve the Arnold conjecture. The invariants Floer constructed inspire today’s powerful
Floer homologies [Flo88], which enabled the proofs of the three-dimensional Weinstein conjecture
(Reeb vector fields have periodic orbits) [Tau07], the proof of Property P (nontrivial knots have
nontrivial surgeries) [KM04], and the disproof of the Triangulation Conjecture [Man16].

Yet there is a fundamental obstacle in the field: Floer homologies are extraordinarily difficult to
compute. Their differentials are constructed using moduli spaces of solutions to nonlinear PDEs,
meaning they are defined almost exclusively in analytically generic situations. Meanwhile, comput-
ing a Floer differential requires identifying every single PDE solution, which is usually only feasible
in the presence of a highly non-generic constraint on the solutions such as a torus action. In short,
genericity is the enemy of computability. I work to bridge this gap, creating computational schema
for Floer homologies in natural geometric settings with fewer symmetry restrictions and extracting
new dynamical information in the settings we currently understand.

Organization: I first provide background, then describe my past, ongoing, and future work in
three sections §2-4. Besides §3.3, which requires Definition 2.4, §2-4 may be read independently.

1.1. Background. A contact form is a smooth one-form λ on an odd-dimensional manifold
whose kernel hyperplane field is nonintegrable, while a symplectic form is a closed smooth two-
form ω on an even-dimensional manifold. Both induce volume forms. An essential feature of a
contact form is its Reeb vector field R, the unique vector field in the kernel of dλ with λ(R) = 1.
Its flow preserves λ, and its closed orbits are called Reeb orbits.

My work often involves contact and symplectic forms with dλ = ω. Exactly what dλ = ω means
varies based on the setting (e.g. λ may only be contact when restricted to a submanifold).
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Research Program 1.1. When manifolds of adjacent dimensions are topologically compatible
and contact/symplectic forms they carry are also compatible, how does this inform their geometry?

My research involves three such types of compatibility: TQFTs and cobordisms, torus and circle
actions, and open book decompositions. A (3 + 1)-dimensional topological quantum field theory
(“TQFT”) assigns homology groups to three-manifolds and homomorphisms called cobordism
maps to 4D cobordisms. I use TQFTs at the chain level to study 4D symplectic cobordisms with
contact boundaries, see §2. Circle actions and open books on three-manifolds I explain in §3.

Figure 1. A 3D sketch of
J-holomorphic curves defin-
ing the ECH differential.

One tool I use is embedded contact homology (“ECH”), a
Floer-type homology theory for a contact three-manifold (Y, λ). It
is generated by certain finite sets of Reeb orbits, and its differential
is defined by counting J-holomorphic (or pseudoholomorphic)
curves in R× Y asymptotic to cylinders over Reeb orbits (Fig. 1).
J-holomorphic curves are solutions to a nonlinear Cauchy-Riemann
equation on T (R× Y ), where J is a generalization of

√
−1.

ECH is invariant of λ and depends only on (Y, kerλ) [Tau10].
It is isomorphic to Seiberg-Witten Floer homology (HM) and
Heegaard Floer homology (HF) [KLT, CGH11]. Each has sig-
nificant strengths when compared to ECH: TQFT cobordism maps
are fully defined in HM; HF is more easily computable. Yet the
ECH chain complex provides new information about dynamics via
the ECH capacities (§2) and knot-filtered ECH (§4).

Research Program 1.2. Use HM and HF to make the ECH chain
complex, ECH capacities, and knot filtration more computable.

2. Symplectic embeddings and ECH capacities

A symplectic embedding is an embedding, denoted X
s
↪→ X ′, which identifies the symplectic

forms. Symplectic embeddings are at the heart of a central tenet of symplectic geometry: the
rigidity-flexibility dichotomy. A symplectic phenomenon is “rigid” if it is similar to complex geom-
etry, while it is “flexible” if it is constrained only by volume. Rigid and flexible features intertwine
throughout the field, and I investigate their interplay via infinite staircases (§2.1).

Gromov proved nonsqueezing in [Gro85], the groundbreaking result that a 2n-ball of radius r
in Cn can only embed symplectically into a cylinder D2(R)×Cn−1 if r ≤ R. Nonsqueezing is rigid,
as the ball has finite volume while the cylinder’s volume is infinite. Conversely, many embedding
problems are flexible: [Bir97], [MS12]. Characterizing embeddings is very difficult even for some of
the simplest symplectic manifolds [McD09, McD11]. I study embeddings of toric domains, which
model 2D physical motion in 4D phase space under a generalized notion of conservation of energy.

(0, a)

(a, 0)

(a) Ball B(a)

(0, b)

(a, 0)

(b) Ellipsoid E(a, b)

(0, b) (a, b)

(a, 0)

(c) Polydisk P (a, b)

(b, 1-b)(0, 1-b)

(1, 0)

(d) Xb

Figure 2. Moment polytopes Ω, labeled by their toric domain XΩ. All are convex.
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Definition 2.1. For Ω a region in the first quadrant of R2, the toric domain (XΩ, ω0) is

XΩ := {(z1, z2) ∈ C2|(π|z1|2, π|z2|2) ∈ Ω}, ω0 = dx1 ∧ dy1 + dx2 ∧ dy2.

If Ω is convex, then XΩ is convex. If Ω is a polygon whose sides have rational slopes, XΩ is finite
type. We call Ω the moment polytope of XΩ. See Fig. 2 for key examples.

2.1. Infinite staircases. Because XΩ
s
↪→ XcΩ′ if c >> 0, we are interested in the most volume-

filling embedding, described by the ellipsoid embedding function

cXΩ
(a) := inf{c | (E(a, 1), ω0)

s
↪→ (XcΩ, ω0)}.

McDuff and Schlenk in [MS12] found cB(1) has a surprising structure called an infinite staircase:
cB(1) is either smooth or piecewise linear, with infinitely many nonsmooth points accumulating to
a finite limit. Further researchers studied discrete families of cXΩ

: [CFS17, Ush19, CHMP20, Cri].
The unifying CGHMP conjecture ([CHMP20, Conj. 1.20]) asserts that (up to scale) there are
exactly twelve convex polygons Ω with corners in Q2 and cXΩ

having an infinite staircase.

Research Program 2.2. With coauthors among Bertozzi, Holm, Magill, Maw, Mwakyoma, Mc-
Duff, and Pires, develop machinery computing and classifying cXΩ

; prove the CGHMP conjecture.

Figure 3. A Farey diagram
of infinite staircases.

We recently completed Research Program 2.2 for the Xbs.

Theorem 2.3 ([MMW22, MPW]). There is a set B ⊂ [6, 8] with:

(i) [6, 8] \B is homeomorphic to the Cantor set.
(ii) For each a0 ∈ [6, 8] \ B, there is a unique b0 so that cXb0

has an infinite staircase, with steps accumulating to a point
with a-coordinate a0.

(iii) For any other b ∈ [0, 1), cb is equivalent to one in (ii) or
c1/5 (which has no infinite staircase).

(iv) The CGHMP conjecture holds for Xb.

Key infinite staircases generating those in Thm. 2.3 can be rep-
resented by the diagonal lines in the Farey diagram (Fig. 3); the
complement B of the Cantor set is represented by the vertical lines.

Proving Thm. 2.3 required us to compute huge numbers of ECH
capacities.

Definition 2.4 ([Hut11]). The ECH spectrum of (Y, λ) is

0 = c0(Y, λ) < c1(Y, λ) ≤ c2(Y, λ) ≤ · · · ≤ ∞,

where ck(Y, λ) is the length of the shortest homologically essential set of Reeb orbits of ECH grading
2k. The ECH capacities of a symplectic filling (X,ω) of (Y, λ) are ck(X,ω) = ck(Y, λ).

ECH capacities obstruct symplectic embeddings:

(2.1) X
s
↪→ X ′ ⇐⇒ ck(X,ω) ≤ ck(X

′, ω′) ∀k.

The idea of (2.1) is if φ : X
s
↪→ X ′, thenX\φ(X ′) is a symplectic cobordism and ck(X

′, ω′)−ck(X,ω)
is at least the area of a J-holomorphic curve in X\φ(X ′) found by the ECH cobordism map [HT13].
By [McD11, Cri19], (2.1) is an equivalence when X = E(a, b) and X ′ = XΩ is convex, implying
that each step in cXΩ

arises from a specific J-holomorphic curve.
We computed tens of thousands of ECH capacities to identify the new infinite staircases of Thm.

2.3. Phenomena such as the the fractal structure in Thm. 2.3 (i, ii), the “descending infinite
staircases” discovered in [BHM+21], and the symmetries of [MM21] are invisible with fewer.
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2.2. Full CGHMP conjecture. If XΩ is convex and finite type then Ω can be obtained from the
triangle in Fig. 2 (a) by truncating corners, corresponding to the symplectic blowup of the (closed)
symplectic toric manifold CP 2. The Xb require only one blowup, thus are foundational cases for
the CGHMP conjecture; our methods also work well for polydisks P (b, 1):

Theorem 2.5 ([MPW]). The CGHMP conjecture holds for polydisks.

Work in progress by Magill suggests that Thm. 2.3 (i, ii) extends to further blowups by taking
a product of Cantor sets.

2.3. Undergraduate research. I advised summer research in 2020 (under Jo Nelson) and 2022
(as lead organizer). In 2020, we considered polydisk domains, extending [Hut16a, Thm. 1.5]:

Theorem 2.6 ([DNN+]). If 1 ≤ a ≤ 3
2 , k ≥ 3, P (a, 1)

s
↪→ E

(
c2k+1

2 , c
)
⇔ P (a, 1) ⊂ E

(
c2k+1

2 , c
)
.

Our proof used obstructions derived from the genus (rather than the area) of J-holomorphic
curve cobordism maps. In 2022, we studied ellipsoid embedding functions with polydisk targets.

Theorem 2.7 ( [FHM+22]). Setting β = 6+5
√
30

12 , the function cP (β,1) has an infinite staircase.

The significance of Thm. 2.7 is that Usher found countably many cP (β,1) with an infinite staircase

[Ush19], each with a counterpart staircase cXb
[BHM+21, MM21]. Thm. 2.7 is the first evidence

that uncountable fractal structure of Thm. 2.3 (i, ii) respects the polydisk–Xb correspondence.

Research Program 2.8 (With future undergraduates). (i) Extend the “almost toric fibra-
tion” methods of Thm. 2.7 to prove [Ush19, Conj. 4.23].

(ii) Optimize the algorithms for genus bounds from [DNN+] to extend Thm. 2.6.

2.4. Future work: ECH cobordism maps for toric domains. In [BHM+21, Lem. 92] we
related ECH embedding obstructions to those from Seiberg-Witten theory due to McDuff [McD11].
This is useful because ECH capacities are algorithmic (if expensive) to compute, while McDuff’s
obstructions carry more information yet are not algorithmic and require XΩ to be finite type.

Our proof of [BHM+21, Lem. 92] is algebraic, but there may be a geometric and more general

proof. If φ : E(a, 1)
s
↪→ XΩ, the ECH cobordism map ought to count J-holomorphic curves in

XΩ\φ(E(a, 1) and recover McDuff’s obstructions (which are homology classes of spheres). However,
because of extraordinary analytical difficulties, the ECH cobordism map is defined via ECH ∼= HM,
not by counting curves. The cobordism map does tell us curves exist [HT13], but we only rarely
know they are McDuff’s spheres [CH18, CHM18].

Question 2.9. When do the ECH curves recover McDuff’s curves? Does [BHM+21, Lem. 92]
generalize to all convex XΩ geometrically?

Question 2.9’s resolution would have a satisfying application. A crucial result obstructing infinite
staircases, [CHMP20, Thm. 1.11], relies on McDuff’s methods. The ellipsoids E(1, b) with b+1/b ∈
Z (see [CS]) are not finite type, so McDuff’s curves do not exist. Using Question 2.9 to translate the
proof of [CHMP20, Thm. 1.11] to ECH would rule out infinite staircases for E(1, b), and possibly
also for toric domains with nonlinear boundaries. Question 2.9 would also shed more light on the
stabilized symplectic embedding conjecture of McDuff [McD18].

2.5. Future Ph.D. advising. Boundaries of toric domains generalize to toric lens spaces. My
thesis [Wei21] analyzed the ECH chain complexes of toric L(p, p− 1)s, thus I am interested in:

Research Program 2.10. (For PhD. students.) Define “convex” and “concave” toric lens spaces.
Find an algorithm to compute their ECH spectra, generalizing [Hut11, Cho16, CCGF+14, Cri19].

Research Program 2.10 would illuminate two phenomena currently only understood for S3: the
geometric meaning of the subleading asymptotics of ECH capacities [CS20] and the utility of ECH
capacities to characterize embeddings between symplectic fillings of lens spaces [Lis08, Sta15].
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3. The ECH chain complex of S1-invariant and open book contact forms

In §2 we considered convex regions X ⊂ C2 with the symplectic form

ω0 = dx1 ∧ dy1 + dx2 ∧ dy2 = dλ0, λ0 =
1

2
(x1 dy1 − y1 dx1 + x2 dy2 − y2 dx2).

Restricted to ∂X (topologically S3), λ0 is a contact form. Its Reeb vector field generates a free S1

action extending to an almost free T 2 action. By far the most is known about such λ (see §2).
Very little is known about the ECH of the many intriguing natural examples of contact manifolds

with less symmetry, e.g. the boundary of a Lagrangian product of an ellipse and a disk [Ram17],
the Jacobi integral in the circular restricted three-body problem [OR61], or contact structures
supported by most open book decompositions [Gir02]. The Viterbo conjecture asks whether all
symplectic measurements are equal on convex regions in Cn. It is true for regions symmetric under
specific circle actions [GRH22, Prop. 1.4]; we would like to generalize this set of actions.

Research Program 3.1. Compute the ECH chain complex and spectrum for non-toric (Y, λ),
first systematically studying S1 actions which do not extend to T 2 actions.

3.1. Prequantization bundles. These contact manifolds are circle bundles over a surface whose
Reeb flow equals the fiber action, and where dλ projects to a symplectic form on the base [BW58].

Theorem 3.2 ([NW20]). Let (Y, λ) be a prequantization bundle. Then ECH∗(Y, kerλ) is the
exterior algebra of the homology of the surface.

Theorem 3.2 first appeared in a Z2-graded form in the unpublished thesis of Farris [Far11];
Nelson and I completed the J-holomorphic curve analysis and proved the Z-graded version, using
HM. Ferreira-Ramos used Thm. 3.2 to compute the ECH capacities of disk bundles [FR21].

An algorithm for the ECH spectrum of general prequantization bundles seems currently out of
reach without significant progress on computations of Gromov-Witten invariants. However, there
may be some hope when (Y, λ) is symplectically fillable.

Question 3.3. Can we compute the ECH capacities of symplectic fillings of prequantization bun-
dles as was done for symplectic homology in [GS18]?

3.2. Open book decompositions and Seifert fibrations. An open book decomposition is a
fibration over S1 of a three-manifold minus a link (the binding) by Seifert surfaces (the pages). A
contact form is adapted to an open book if its Reeb flow is transverse to the pages and tangent to
the binding. An adapted contact form induces a diffeomorphism of the page called the (Poincaré)
return map, which sends a point to its image under the Reeb flow for the shortest amount of time
that point takes to return to the page. An open book is periodic or pseudo-Anosov if its return
map is a periodic or pseudo-Anosov element of the mapping class group of its page.

Many λ adapted to periodic open books have Seifert fibrations generated by the Reeb vector
field, a fact Colin–Honda used to prove that their linearized contact homology is nontrivial [CH13].
Nelson and I paired this idea with Kegel-Lange’s “orbifold prequantization bundles” [KL21] to
prove:

Theorem 3.4 ([NW]). Let λ be the contact form on S3 adapted to the open book with binding the
T (2, q), q > 0 torus knot and periodic return map. With ECC denoting the ECH chain groups,

ECC∗(S
3, λ) = ECH∗(S

3, λ) =

{
Z if ∗ = 0, 2, 4, 6, . . .

0 otherwise.

Pseudo-Anosov open books, such the one on S3 with the figure-8 as its binding, have much more
complicated differentials. Their ECH is work in progress.
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3.3. Future work: HF capacities. In [CHM+21], Cristofaro-Gardiner–Humiliére–Mak–Seyfaddini–
Smith defined the “link spectral invariant” for a Lagrangian link in a surface. Their construction
passes through an action filtration on HF which may equal the length filtration on ECH (defining
the ECH spectrum, Definition 2.4) by the isomorphism of Colin-Ghiggini-Honda [CGH11].

Question 3.5. Are the link spectral invariants the ECH spectrum? Are they easier to compute?

I am currently generalizing my work on fibered torus knots to compute the ECH capacities of λ
adapted to other periodic open books, providing evidence for a positive answer to Question 3.5.

4. Knot-filtered ECH

My 2019 thesis investigated knot-filtered ECH, a spectral invariant measuring the linking of
ECH generators with a fixed Reeb orbit. It was introduced by Hutchings in [Hut16b] whenH1(Y ) =
0. If B is a Reeb orbit and θ ∈ R is a parameter depending on dλ near B, ECHℓ(Y, kerλ,B, θ) is
the homology of the subcomplex generated by orbits of linking number at most ℓ with B. I proved:

Theorem 4.1 ([Wei21]). If b1(Y ) = 0, ECHℓ(Y, kerλ,B, θ) is defined and independent of λ, J .

I applied Theorem 4.1 to lens spaces Y = L(p, p − 1) with B a component of the image of the
Hopf link under the quotient L(p, p− 1) = S3/Zp, computed their knot-filtered ECH, and proved:

Theorem 4.2 ([Wei21]). Contact forms on L(p, p − 1) adapted to open books with annulus pages
and with unequal irrational binding “rotation numbers” must have a third Reeb orbit γ. The length
of γ is bounded from above by a function of its linking numbers with the binding components.

Bechara Senior–Hryniewicz–Salomão have generalized Thm. 4.2 [BHS21]. In my thesis [Wei21]
I used Theorem 4.2 to prove a quantitative smooth version of Franks’ theorem [Fra92] that area-
preserving homeomorphisms of the annulus have two or infinitely many periodic orbits.

4.1. Future work. Understanding the full value of knot-filtered ECH as an invariant will require
new computational methods and a significant extension of its foundations.

Research Program 4.3. Prove knot-filtered ECH is defined for all Y and independent of λ, J .

There is a periodic open book on S3 with the left-handed trefoil as its binding, similar to the
one in §3.2. Contact forms adapted to this open book cannot induce Seifert fibrations by [LM04]
as they are “overtwisted.” We know very little about the ECH of overtwisted contact forms: their
chain complexes ECC must be very unusual by [BEVHM12], yet we do not know exactly how.

Question 4.4. What is the knot-filtered ECH of the contact form adapted to the open book with
T (2,±3) as its binding? More generally, does knot-filtered ECH detect overtwistedness?

Finally, I hope to relate the ECH knot filtration to the well-studied Heegaard Floer knot filtration.

Question 4.5. Does sending θ to zero in knot-filtered ECH recover knot Heegaard Floer homology
HFK, as in the discussion in [CGHH11, §1.2]?
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[Gir02] E. Giroux. Géométrie de contact: de la dimension trois vers les dimensions supérieures. In Proceedings

of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pages 405–414. Higher Ed.
Press, Beijing, 2002.

[GRH22] J. Gutt, V. G. B. Ramos, and M. Hutchings. Examples around the strong Viterbo conjecture. J. Fixed
Point Theory Appl., 24(41), 2022.

[Gro85] M. Gromov. Pseudo holomorphic curves in symplectic manifolds. Invent. Math., 82(2):307–347, 1985.
[GS18] V. L. Ginzburg and J. Shon. On the filtered symplectic homology of prequantization bundles. Intl. J.

Math., 29(11), 2018.
[HT13] M. Hutchings and Clifford Henry Taubes. Proof of the Arnold chord conjecture in three dimensions, II.

Geom. Topol., 17(5):2601–2688, 2013.
[Hut11] M. Hutchings. Quantitative embedded contact homology. J. Diff. Geom., 88(2):231–266, 2011.
[Hut16a] M. Hutchings. Beyond ECH capacities. Geom. Topol., 20(2):1085–1126, 2016.
[Hut16b] M. Hutchings. Mean action and the Calabi invariant. J. Mod. Dyn., 10:511–539, 2016.
[KL21] M. Kegel and C. Lange. A Boothby–Wang theorem for Besse contact manifolds. Arn. Math. J.,

7:225–241, 2021.
[KLT] C. Kutluhan, Y.J. Lee, and C.H. Taubes. HF = HM I: Heegaard Floer homology and Seiberg–Witten

Floer homology. arXiv:1007.1979.

7



[KM04] P. B. Kronheimer and T. S. Mrowka. Witten’s conjecture and Property P. Geo. Topol., 8:295–310, 2004.
[Lis08] P. Lisca. On symplectic fillings of lens spaces. Trans. Amer. Math. Soc., 360(2):765—-799, 2008.
[LM04] P. Lisca and G. Matic. Transverse contact structures on Seifert 3–manifolds. Alg. Geom. Topol.,

4:125–1144, 2004.
[Man16] C. Manolescu. Pin(2)-equivariant Seiberg-Witten Floer homology and the triangulation conjecture. J.

Amer. Math. Soc., 29(1):47–176, 2016.
[McD09] D. McDuff. Symplectic embeddings of 4-dimensional ellipsoids. J. Topol., 2(1):1–22, 2009.
[McD11] D. McDuff. The Hofer conjecture on embedding symplectic ellipsoids. J. Diff. Geom., 88(3):519–532,

2011.
[McD18] D. McDuff. A remark on the stabilized symplectic embedding problem for ellipsoids. Eur. J. Math.,

4:356–371, 2018.
[MM21] N. Magill and D. McDuff. Staircase symmetries in Hirzebruch surfaces, 2021. arXiv:2106.09143.
[MMW22] N. Magill, D. McDuff, and M. Weiler. Staircase patterns in Hirzebruch surfaces, 2022. arXiv:2203.06453.
[MPW] N. Magill, A. R. Pires, and M. Weiler. On a conjecture of Cristofaro-Gardiner–Holm–Mandini–Pires on

infinite staircases for rational Hirzebruch surfaces. 29 pages.
[MS12] D. McDuff and F. Schlenk. The embedding capacity of 4-dimensional symplectic ellipsoids. Ann. of

Math. (2), 175(3):1191–1282, 2012.
[NW] J. Nelson and M. Weiler. The ECH index for T (2, q) open book decompositions of the 3-sphere. 54

pages.
[NW20] J. Nelson and M. Weiler. Embedded contact homology of prequantization bundles, 2020.

arXiv:2007.13883.
[OR61] M. W. Ovenden and A. E. Roy. On the use of the Jacobi integral of the restricted three-body problem.

Monthly Notices Roy. Astronom. Soc., 123:1–14, 1961.
[Ram17] V. G. B. Ramos. Symplectic embeddings and the Lagrangian bidisk. Duke Math. J., 166(9):1703–1738,

2017.
[Sta15] L. Starkston. Symplectic fillings of Seifert fibered spaces. Trans. Amer. Math. Soc., 367(8):5971–6016,

2015.
[Tau07] C. H. Taubes. The Seiberg-Witten equations and the Weinstein conjecture. Geom. Topol., 11:2117–2202,

2007.
[Tau10] C. H. Taubes. Embedded contact homology and Seiberg-Witten Floer cohomology I. Geom. Topol.,

14(5):2497–2581, 2010.
[Ush19] M. Usher. Infinite staircases in the symplectic embedding problem for four-dimensional ellipsoids into

polydisks. Algebr. Geom. Topol., 19(4):1935–2022, 2019.
[Wei21] M. Weiler. Mean action of periodic orbits of area-preserving annulus diffeomorphisms. J. Topol. Anal.,

13:1013–1074, 2021.

8


	1. Introduction: pseudoholomorphic curves in low dimensions
	1.1. Background

	2. Symplectic embeddings and ECH capacities
	2.1. Infinite staircases
	2.2. Full CGHMP conjecture
	2.3. Undergraduate research
	2.4. Future work: ECH cobordism maps for toric domains
	2.5. Future Ph.D. advising

	3. The ECH chain complex of S1-invariant and open book contact forms
	3.1. Prequantization bundles
	3.2. Open book decompositions and Seifert fibrations
	3.3. Future work: HF capacities

	4. Knot-filtered ECH
	4.1. Future work

	References

