
Bijective Proofs and Catalan Numbers Nikhil Sahoo

Combinatorics is the study of counting, so numbers generally represent the “size” of a set of objects.

For example, the number 4 could represent the quantity of stars in the left-hand circle. As a slightly more

complicated example, the number 6 could represent all the different ways to pick two out of these four stars.

Definition. A set is any collection of “things” (we will only be concerned with finite sets, though we will

not rigorously define the word “finite”). These “things” in A are called elements of A, and we write a ∈ A

to mean “a is an element of A.” We write #(A) to denote the number of elements of A.
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When doing math, we often get equations like 2× 6 = 3× 4. Since we’re used to the rules of arithmetic,

we can do such calculations purely symbolically, but what do they mean? Each side represents a quantity,

the number of things in some set. The equality means that these two sets have the same number of things.

For example, we can interpret 2× 6 = 3× 4 as meaning that a 2-by-6 grid and a 3-by-4 grid have the same

number of 1-by-1 squares. Before proceeding any further, we will make this reasoning a little more formal.

Intuitive Definition. A 1-to-1 correspondence is a rule that pairs elements of sets A and B, such that

each element of A corresponds to exactly one element of B and vice versa. When counting the size of a set,

the assertion #(A) = n can be taken to mean “there is a 1-to-1 correspondence between A and {1, 2, . . . , n}.”

We can compose 1-to-1 correspondences A←→ B and B ←→ C to get a 1-to-1 correspondence A←→ C.

Therefore #(A) = n = #(B) if and only if there is a 1-to-1 correspondence A←→ {1, 2, , . . . , n} ←→ B.

Formal Definition. Given sets A and B, a function f : A→ B is a rule that takes in any element a ∈ A

and assigns it an element f(a) ∈ B. One example is the identity IdA : A→ A, which is defined by the rule

f(a) = a for all a ∈ A. Two functions f : A→ B and g : B → C compose to form a function g ◦ f : A→ C,

which is defined by (g ◦ f)(a) = g
(
f(a)

)
for all a ∈ A (notice the order in which we write the two functions).

Two functions f : A→ B and g : B → A are said to be inverses if they satisfy g ◦ f = IdA and f ◦ g = IdB .

A function f : A→ B is called a 1-to-1 correspondence if it admits an inverse function g : B → A.
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Consider natural numbers n ≥ k ≥ 0. If we have a set of n objects, the number of ways to pick out k

objects is denoted
(
n
k

)
(pronounced n-choose-k). You may have seen this before, with the concrete formula(

n

k

)
=

n!

k!(n− k)!

(Recall the definition of the factorial n! = 1× 2× · · · × n.) However, our goal is not calculate the concrete

number of ways, but rather to set up 1-to-1 correspondences that show equality without needing computation.

Examples. We will demonstrate some examples of bijective proofs using this “choose” operation.

(a) Show that
(
n
k

)
=

(
n

n−k

)
for any 0 ≤ k ≤ n.

Let A be the set of ways to pick a committee1 of k people out of a larger group of n people.

Let B be the set of ways to pick a committee of n− k people out of a larger group of n people.

For every choice a ∈ A of a committee of k people, we can get a committee f(a) ∈ B of n− k people

by choosing everyone not in A. This is a 1-to-1 correspondence between A and B, so we have(
n

k

)
= #(A) = #(B) =

(
n

n− k

)
.

Usually, we won’t spell it out in this much detail, but rather say something like “to choose a committee

of k people from a total of n people, it is equivalent to choose the n− k people not in the committee.”

(b) Show that
(
n
k

)(
k
j

)
=

(
n
j

)(
n−j
k−j

)
for any 0 ≤ j ≤ k ≤ n.

The quantity
(
n
k

)(
k
j

)
is the number of ways to pick a committee of k people out of a total of n people,

then pick a sub-committee of j people out of those k. It is equivalent to pick a j-person sub-committee

out of the larger group of n people, then pick the remaining k − j committee members from the n− j

people remaining. This latter process can be conducted in
(
n
j

)(
n−j
k−j

)
different ways.

(c)
(
n
k

)
=

(
n−1
k

)
+
(
n−1
k−1

)
for any 1 ≤ k ≤ n− 1.

There are
(
n
k

)
ways to select a k-person committee from a larger group of n people, of whom I am one.

Consider whether or not I am chosen. If I am not, then there are
(
n−1
k

)
ways to choose the committee

members from among the other n− 1 people. But if I am chosen, then there are
(
n−1
k−1

)
ways to choose

the remaining members of the committee. Therefore, in total, there are
(
n−1
k

)
+

(
n−1
k−1

)
possibilities.

1Thinking in terms of groups of people, rather than arbitrary sets, can make these problems more concrete. In this setting,

“committee” is the typical term for a distinguished subset of the total group of people.
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Exercises. Here are some more identities that admit bijective proofs.

(a) Show that
(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
n

)
= 2n for any n ≥ 0. Next, prove the following generalization:

n∑
k=j

(
n

k

)(
k

j

)
= 2n−j

(
n

j

)
for any 0 ≤ j ≤ n.

(b) Show that
(
k
k

)
+
(
k+1
k

)
+ · · ·+

(
n
k

)
=

(
n+1
k+1

)
for any 0 ≤ k ≤ n (this is called the hockey-stick formula).

Next, prove the following generalization, which is called the Chu-Vandermonde identity:

k∑
j=0

(
m

k

)(
n

k − j

)
=

(
m+ n

k

)
.

(Here, we must define
(
n
k

)
= 0 whenever k > n. Why does this definition make sense?)

Hopefully, these examples have acquainted us with the idea of bijective proofs. We now move on to our

main class of examples, the Catalan numbers. These are a infinite sequence of numbers C0, C1, C2, C3, . . . ,

which has many different, equivalent definitions. We have to start somewhere, so we define them as follows:

Definition. A Dyck word of length 2n is a valid arrangement of n pairs of parentheses. As a first example,

when n = 2, there are two valid arrangements: ()() and (()); as well as four invalid arrangements: )((), )()(,

))(( and ())(. More formally, an arrangement is valid if, at any point along the sequence, there are no more

closing parentheses than opening parentheses. We define Cn to be the number of Dyck words of length 2n.

Examples. We saw that C2 = 2. It is easy to check that C1 = 1. We also have C0 = 1, because we count

the “empty word” as one valid arrangement of 0 pairs of parentheses. See if you can calculate C3 and C4.

As the number of parentheses grows, checking the validity of a Dyck word becomes a strain on the eyes.

Is ((((()))(()()))()))(()((())()) valid? It’s hard to tell! To make this easier, we can instead draw Dyck paths.

Drawing 2n steps along a flat line segment (the ground), we can write a “step up” instead of an opening

parenthesis and a “step down” instead of a closing parenthesis. This will look something like the following:

( ( ( ( ( ) ) ) ( ( ) ( ) ) ) ( ) ) ) ( ( ) ( ( ( ) ) ( ) )

Let us now revisit our conditions in terms of this “mountain range.” Our elevation at a given point is

(# of opening parentheses)− (# of closing parentheses).

Thus, the fact that parentheses come in pairs means that we start and end at ground-level. The fact that

there are no more closing than opening parentheses means that the above difference should always be ≥ 0,

so we can never dip below ground-level. In particular, we now easily see where ((((()))(()()))()))(()((())())

violates the validity condition (note the red valley). In essence, we have established a 1-to-1 correspondence

between Dyck words and Dyck paths. Now, let’s try to actually count them!
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Consider a Dyck path of length 2n. It may dip back down to ground-level somwhere between the beginning

and ending of the path, but this must happen after an even number of steps (after an odd number of steps,

our elevation will be odd and thus non-zero). So let us count the Dyck paths that first touch down after 2m

steps, where 0 < m ≤ n (if m = n, then we don’t touch back down until the end). This will look as follows:

0 2m 2n

?
?

Between 2m and 2n, we can have any Dyck path of length of 2(n−m). But in the first part, we cannot dip

below the dashed line, or we would touch down somewhere before 2m. Hence, by shifting our view so that

this dashed line corresponds to elevation 0, we see that this portion can be any Dyck path of length 2(m−1)

(since it goes from 1 to 2m− 1). In other words, the number of Dyck paths that first touch back down after

2m steps is Cm−1Cn−m. Summing over all of the possible values m = 1, 2, . . . , n, we get a recursion formula:

Cn =

n∑
m=1

Cm−1Cn−m.

Starting with C0 = 1, this allows us to compute any Catalan number from the previous ones. But it would

be nicer to have a closed form, where we can calculate Cn without first having to calculate Cm for all m < n.

We will prove the following formula, which allows for much simpler calculations:

Cn =
1

n+ 1

(
2n

n

)
.

To do so, we must allow for paths that may dip below ground-level. Thus, we say “path” to mean a sequence

of up/down steps which starts and ends at ground-level, but which may dip below somewhere in-between.

Thus, the only requirement is that there are an equal number of up-steps and down-steps. Therefore, a path

is determined by choosing which n of the 2n steps are up-steps. Hence, we can count a total of
(
2n
n

)
paths.

Exercise. Translate this back into the language of parentheses. If we randomly pick out some arrangement

of n opening and n closing parentheses, what is the probability that this arrangement is valid?

We will say that the deficit of a path is k if there are exactly 2k steps where the path is below ground-level

(by an argument similar to the one above, this number of steps must be even). Then there are n+1 possible

values for the deficit, namely k = 0, 1, . . . , n. We will show that there are actually an equal number of paths

for each of these given deficits. In particular, the number of Dyck paths (i.e. paths of deficit 0) is 1
n+1 times

the total number of paths, which we saw to be
(
2n
n

)
. This will immediately yield the formula Cn = 1

n+1

(
2n
n

)
.

Proof that there are the same number of paths for each deficit. It suffices to fix 1 ≤ k ≤ n and find a 1-to-1

correspondence between paths of deficit k and paths of deficit k − 1 (for we can then iterate this process).

Suppose that we have a path of deficit k. We will transform it to have deficit k− 1. Since k > 0, it must dip

below ground-level. Consider the first two steps going between elevations 0 and −1 (either up or down):

• The first such step is a down-step and is the first time we dip below ground-level;

• The second such step is an up-step and is the first time we return to ground-level from below.

Mark this second step red, everything before it blue and everything after it green. (See the figure below.)
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0 2n

Move the green portion to the beginning and the blue portion to the end. Move the red step to fit between

the newly positioned green and blue pieces. (See the figure below.) Since the green portion starts and ends

at elevation 0, its portion of the deficit in the green portion remains unchanged. But the blue portion ends

at elevation −1, while a path is required to end at elevation 0, so we need to shift the blue portion up by 1.

There is only one blue step between elevations 0 and −1, since we colored the second such step red. Thus,

shifting the blue portion up by 1 only moves 1 blue step from below-ground to above-ground. The red step

also moves from below-ground to above-ground, since it now goes between the end of green (at elevation 0)

and the beginning of blue (at elevation 1). Hence, two steps are moved from below-ground to above-ground,

one red and one blue. This shows that we indeed reduced the deficit by 1.

0 2n

Lastly, to show that this gives a 1-to-1 correspondence, we must find an inverse operation going from

paths of deficit k− 1 to paths of deficit k. Given a path of deficit k− 1 < k ≤ n, there must be some portion

of the path that is above-ground. Define the red step to be the last up-step between elevations 0 and 1,

and then run an analogous procedure to the above. The details are similar, so we do not repeat them here.

However, it is important to confirm that the two functions are inverses, which we have not done! The reader

may attempt to fill in these details. (For a slicker definition of the second function, we can do the following:

rotate the path by 180◦, perform our original operation that reduces deficit by 1, then rotate back.)

Notice that, even when we are concretely counting sets, we are still able to implement bijective proofs:

though Dyck paths are hard to count directly, we considered them as part of a larger set that we could count,

then used a bijective proof to see what fraction of this set they made up.

Another interpretation of Catalan numbers occurs when we rotate Dyck paths. Consider an n× n grid.

Consider the set of all paths from the bottom-left to the top-right corner, staying below the main diagonal,

where we can only travel up or to the right along grid-lines. (All such paths for n = 3 are drawn below.)

Notice that we must take n steps to the right and n steps up, and staying below the diagonal means that

(# of steps to the right)− (# of steps up)

is always ≥ 0. Thus, the number of such paths is Cn. (In fact, these can just be seen as rotated Dyck paths!)
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Let Ln denote the set of sequences (a1, . . . , an) with 0 ≤ ak < k for all k = 1, . . . , n. There are k choices

for the value of ak, so #(Ln) = 1× 2× · · · × n = n!. We can illustrate such a sequence with a bar graph:

0 0 0 0 0 1 0 0 2 0 1 1 0 1 2 0 1 0

The condition “0 ≤ ak < k for all k = 1, . . . , n” means precisely that the bar graph lies below the diagonal.

We will call such a sequence non-decreasing if a1 ≤ a2 ≤ · · · ≤ ak. Given any such sequence, we can start

in the bottom-left corner and travel up and to right along the bar graph to the top-left corner. This yields

one of the grid-paths lying below the diagonal, which we discussed above. Conversely, given any such path,

we get a bar graph of a non-decreasing sequence by filling in everything below the path. (Compare the two

figures above.) This gives a 1-to-1 correspondence between non-decreasing sequences in Ln and Dyck paths.

Shifting gears a little bit, we now return to the concept of a function.

Definition. For two sets A and B, we say that A is a subset of B (written A ⊂ B) if every element of A

is also in B (i.e. a ∈ A =⇒ a ∈ B). If f : B → C is a function and A ⊂ B is a subset, we define a subset

f(A) ⊂ C to consist of the elements f(a) ∈ C for all a ∈ A (this is called the image of A).

Consider a function f : A→ B. We will say that . . .

• . . . f is onto if every element of B is hit by at least one element of A (i.e. f(A) = B),

• . . . f is 1-to-1 if every element of B is hit by at most one element of A (i.e. f(a1) = f(a2) =⇒ a1 = a2),

• . . . f is a 1-to-1 correspondence if every element of B is hit by exactly one element of A.

This definition of a 1-to-1 correspondence is just a slight rephrasing of the intuitive definition given above.

Clearly, the function f is a 1-to-1 correspondence if and only if f is onto and 1-to-1. (The interested reader

may prove that this definition of a 1-to-1 correspondence is equivalent to the definition in terms of inverses.)

Proposition. If f : B → C is 1-to-1 and A ⊂ B, then f restricts to a 1-to-1 correspondence A←→ f(A).

Proof. We consider the “restricted” function f |A : A→ C, where we only care about inputs coming from A.

Since f : B → C is 1-to-1, the restriction f |A : A→ C is also 1-to-1. This function A→ C may not be onto,

but if we shrink the “target set” down to f(A), we still get a well-defined function f |A : A→ f(A), since

a ∈ A =⇒ f |A(a) = f(a) ∈ f(A).

The function f |A : A→ f(A) remains 1-to-1, but now it is also onto, simply by definition of f(A).

•
•

•
•

•
•

•

•
•

neither
1-to-1 nor onto

A B

•
•

•
•

•
•
•

onto
but not 1-to-1

A B

•
•

•

•
•
•
•

A B

1-to-1
but not onto

•
•
•
•

•
•
•
•

A B

1-to-1
correspondence


