
Jordan Normal Form via Exercises

Taking linear algebra as an undergraduate, I got pretty lost when we discussed the Jordan Normal Form.

As such, I recently needed to revisit this topic before I could understand certain results about Lie algebras.

This note presented a much cleaner explanation than the other sources that I had looked at, which inspired

me to jot down this framework (with a few tweaks befitting my own understanding) into a hastily written

set of exercises on the topic. Several of the exercises are equipped with a footnote containing a hint.

Generalized Eigenspaces

Let A : V → V be a linear operator on a finite-dimensional vector space over C.

Definition. For any λ ∈ C, the generalized λ-eigenspace of A is defined to be

Vλ =
{
v ∈ V : (A− λI)kv = 0 for some k ∈ N

}
Any non-zero v ∈ Vλ is called a generalized λ-eigenvector. A λ-chain of length k is a sequence of non-zero

vectors v1, . . . , vk ∈ V such that (A− λI)vi = vi−1 for all i = 2, . . . , k and (A− λI)v1 = 0.

1. If v1, . . . , vk is a λ-chain, then {v1, . . . , vk} is a linearly independent subset of Vλ.
1

Jordan Normal Form Theorem. There is a basis of V that is a union of chains. The number of λ-chains

of length k in this basis depends only on our original operator A.

To prove this theorem, we first want to break up V into its generalized eigenspaces.

2. There is some k ∈ N, such that (A− λI)kv = 0 for all v ∈ Vλ (or equivalently Vλ = ker(A− λI)k).2

3. If Vλ = ker(A− λI)k, then V = ker(A− λI)k ⊕ im(A− λI)k.3

4. For any k ∈ N, the subspaces ker(A− λI)k and im(A− λI)k are A-invariant.4

5. There exists an A-invariant subspace W ⊆ V such that V = Vλ ⊕W. Moreover:

(a) If µ ̸= λ, then A− µI restricts to an invertible operator on Vλ.
5

(b) If µ ̸= λ, then Vµ ⊆ W.6

6. If the eigenvalues of A are λ1, . . . , λn, then we have V = Vλ1
⊕ · · · ⊕ Vλn

.

Each generalized eigenspace of A is A-invariant, so to prove existence in the Jordan Normal Form Theorem,

it now suffices to show that each Vλ admits a basis that is a union of λ-chains. To prove this, we now restrict

to a single Vλ and set B = A−λI. By what we have shown above, this operator B has the following property:

Definition. A linear operator B : V → V is said to be nilpotent if Bk = 0 for some k ∈ N.

1If ajvj + · · ·+ a1v1 = 0, what happens when you apply (A− λI)j−1 to this linear combination?
2If v1, . . . , vn is a basis of Vλ, then there exist k1, . . . , kn ∈ N such that (A− λI)kivi = 0 for each i = 1, . . . , n.
3First show that their intersection is trivial.
4Notice that A and A− λI commute.
5If v ∈ ker(A− µI), then v is µ-eigenvector of A. What can we conclude about (A− λI)v? What about (A− λI)kv?
6Any u ∈ Vµ can be written as u = v + w, with v ∈ Vλ and w ∈ W. What happens if we apply (A− µI)k to each side?
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Nilpotence and Flags

Definition. A weak flag in a vector space U is any ascending collection of subspaces, going from 0 to U :

0 = N0 ⊆ N1 ⊆ · · · ⊆ Nℓ = U.

Fix a finite set of vectors S = {v1, . . . , vm} ∈ Nj . We will say that S is j-spanning if Nj = Nj−1 + span(S).
We will say that S is j-independent if the only a1, . . . , am ∈ C satisfying

a1v1 + · · ·+ amvm ∈ Nj−1

are a1 = · · · = am = 0. If the set S is both j-spanning and j-independent, we will call it a j-basis.

7. Any j-independent set can be enlarged to form a j-basis.

8. For each j = 1, . . . , ℓ, suppose that Sj is a j-basis. Then S1 ∪ · · · ∪ Sℓ is a basis of U .

Suppose B : U → U is a nilpotent operator with Bℓ = 0. For each i = 0, 1, . . . , ℓ, we define Ni = ker(Bi).

9. This yields a weak flag 0 = N0 ⊆ N1 ⊆ · · · ⊆ Nℓ = U such that B(Ni) ⊆ Ni−1 for each i = 1, . . . , ℓ.

10. If S is j-independent, then B(S) is (j − 1)-independent.7

11. There is a basis S of the vector space U , such that if u ∈ S and Biu ̸= 0, then Biu ∈ S.8

We now return to the situation of a linear operator A : V → V, a generalized eigenspace Vλ and the nilpotent

operator B : Vλ → Vλ given by B = A− λI. We still consider the weak flag Ni = ker(Bi) defined above.

12. The generalized eigenspace Vλ admits a basis that is a union of λ-chains of A.

13. Given a basis of Vλ that is a union of λ-chains, the number of chains of length k is dimNk−dimNk−1.
9

We now have all of the pieces necessary to conclude the result of the Jordan Normal Form Theorem!

Commuting Operators

Closely related to the Jordan Normal Form Theorem is another result, describing a decomposition of A:

Jordan-Chevalley Decomposition Theorem. Given a linear operator A : V → V , there is a unique way

to write A = B +D, where D is diagonalizable, B is nilpotent and BD = DB.

Before we prove this, we need to investigate a couple of more general results about commuting operators.

Consider two operators S : U → U and T : U → U that satisfy ST = TS.

14. If S and T are nilpotent, then S + T is nilpotent.10

7If a1Bv1 + · · ·+ amBvm ∈ Nj−2, then a1v1 + · · ·+ amvm ∈ Nj−1.
8Given a j-basis Sj , we can enlarge B(Sj) to a (j − 1)-basis. Start with an ℓ-basis and iterate this process.
9If nk is the number of chains of length k, then we have dimNj = nj + nj+1 + · · ·+ nℓ for each j = 1, . . . , ℓ.

10If Sn = 0 and Tn = 0, then (S + T )2n = 0.
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15. The eigenspaces of S are T -invariant.

16. Now suppose that S and T are diagonalizable and let U = Uµ1 ⊕ · · · ⊕Uµm be the decomposition into

eigenspaces of S. For each i = 1, . . . ,m, let Pi : U → Uµi
be the projection map out of this direct sum.

(a) For every i = 1, . . . ,m, we have TPi = PiT.
11

(b) If u ∈ U is an eigenvector of T , then Piu is a common eigenvector of S and T .

(c) Every eigenvector of T can be written as a sum of common eigenvectors of S and T.

(d) The vector space U is spanned by common eigenvectors of S and T.

(e) There is a basis for U in which both S and T are diagonal.

This proves that if S and T are diagonalizable, then so is S + T (under the assumption ST = TS).

Recall the decomposition V = Vλ1
⊕ · · · ⊕ Vλn

into generalized eigenspaces of A. We define a diagonalizable

linear operator D : V → V by requiring that D = λI when restricted to the generalized eigenspace Vλ.

17. If a linear operator B : V → V commutes with A, then it commutes with D.12

18. The operator B = A−D is nilpotent and BD = DB.13

This proves existence of a Jordan-Chevalley decomposition, but we also need to show uniqueness. As such,

suppose that we also have A = B′ +D′, where D′ is diagonalizable, B′ is nilpotent and B′D′ = D′B′.

19. The operators B, D, B′ and D′ all commute with each other.14

20. We have B −B′ = D′ −D = 0, so the decomposition is unique.15

This concludes the proof of the Jordan-Chevalley Decomposition Theorem!

11It suffices to show that TPiu = PiTu when u ∈ Uj , for each j = 1, . . . , n. If u ∈ Uj and i ̸= j, then Piu = 0.
12If AB = BA, then each Vλ is B-invariant.
13Verify nilpotency on each Vλ individually.
14First show that D commutes with B′ and D′.
15The only operator that is both diagonalizable and nilpotent is 0.


