Taking linear algebra as an undergraduate, I got pretty lost when we discussed the Jordan Normal Form. As such, I recently needed to revisit this topic before I could understand certain results about Lie algebras. This note presented a much cleaner explanation than the other sources that I had looked at, which inspired me to jot down this framework (with a few tweaks befitting my own understanding) into a hastily written set of exercises on the topic. Several of the exercises are equipped with a footnote containing a hint.

Generalized Eigenspaces

Let $A: V \to V$ be a linear operator on a finite-dimensional vector space over \mathbb{C} .

Definition. For any $\lambda \in \mathbb{C}$, the generalized λ -eigenspace of A is defined to be

$$V_{\lambda} = \{ v \in V : (A - \lambda I)^k v = 0 \text{ for some } k \in \mathbb{N} \}$$

Any non-zero $v \in V_{\lambda}$ is called a generalized λ -eigenvector. A λ -chain of length k is a sequence of non-zero vectors $v_1, \ldots, v_k \in V$ such that $(A - \lambda I)v_i = v_{i-1}$ for all $i = 2, \ldots, k$ and $(A - \lambda I)v_1 = 0$.

1. If v_1, \ldots, v_k is a λ -chain, then $\{v_1, \ldots, v_k\}$ is a linearly independent subset of V_{λ} .¹

Jordan Normal Form Theorem. There is a basis of V that is a union of chains. The number of λ -chains of length k in this basis depends only on our original operator A.

To prove this theorem, we first want to break up V into its generalized eigenspaces.

- 2. There is some $k \in \mathbb{N}$, such that $(A \lambda I)^k v = 0$ for all $v \in V_\lambda$ (or equivalently $V_\lambda = \ker(A \lambda I)^k$).²
- 3. If $V_{\lambda} = \ker(A \lambda I)^k$, then $V = \ker(A \lambda I)^k \oplus \operatorname{im}(A \lambda I)^k$.
- 4. For any $k \in \mathbb{N}$, the subspaces ker $(A \lambda I)^k$ and im $(A \lambda I)^k$ are A-invariant.⁴
- 5. There exists an A-invariant subspace $W \subseteq V$ such that $V = V_{\lambda} \oplus W$. Moreover:
 - (a) If $\mu \neq \lambda$, then $A \mu I$ restricts to an invertible operator on V_{λ} .⁵
 - (b) If $\mu \neq \lambda$, then $V_{\mu} \subseteq W^{6}$.
- 6. If the eigenvalues of A are $\lambda_1, \ldots, \lambda_n$, then we have $V = V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_n}$.

Each generalized eigenspace of A is A-invariant, so to prove existence in the Jordan Normal Form Theorem, it now suffices to show that each V_{λ} admits a basis that is a union of λ -chains. To prove this, we now restrict to a single V_{λ} and set $B = A - \lambda I$. By what we have shown above, this operator B has the following property:

Definition. A linear operator $B: V \to V$ is said to be nilpotent if $B^k = 0$ for some $k \in \mathbb{N}$.

¹If $a_j v_j + \cdots + a_1 v_1 = 0$, what happens when you apply $(A - \lambda I)^{j-1}$ to this linear combination?

 $^{{}^{2}}$ If v_1, \ldots, v_n is a basis of V_{λ} , then there exist $k_1, \ldots, k_n \in \mathbb{N}$ such that $(A - \lambda I)^{k_i} v_i = 0$ for each $i = 1, \ldots, n$.

³First show that their intersection is trivial.

⁴Notice that A and $A - \lambda I$ commute.

⁵If $v \in \ker(A - \mu I)$, then v is μ -eigenvector of A. What can we conclude about $(A - \lambda I)v$? What about $(A - \lambda I)^k v$?

⁶Any $u \in V_{\mu}$ can be written as u = v + w, with $v \in V_{\lambda}$ and $w \in W$. What happens if we apply $(A - \mu I)^k$ to each side?

Nilpotence and Flags

Definition. A weak flag in a vector space U is any ascending collection of subspaces, going from 0 to U:

$$0 = N_0 \subseteq N_1 \subseteq \cdots \subseteq N_\ell = U_{\cdot}$$

Fix a finite set of vectors $S = \{v_1, \ldots, v_m\} \in N_j$. We will say that S is *j*-spanning if $N_j = N_{j-1} + \text{span}(S)$. We will say that S is *j*-independent if the only $a_1, \ldots, a_m \in \mathbb{C}$ satisfying

$$a_1v_1 + \dots + a_mv_m \in N_{j-1}$$

are $a_1 = \cdots = a_m = 0$. If the set S is both *j*-spanning and *j*-independent, we will call it a *j*-basis.

7. Any j-independent set can be enlarged to form a j-basis.

8. For each $j = 1, \ldots, \ell$, suppose that S_j is a *j*-basis. Then $S_1 \cup \cdots \cup S_\ell$ is a basis of U.

Suppose $B: U \to U$ is a nilpotent operator with $B^{\ell} = 0$. For each $i = 0, 1, \dots, \ell$, we define $N_i = \ker(B^i)$.

- 9. This yields a weak flag $0 = N_0 \subseteq N_1 \subseteq \cdots \subseteq N_\ell = U$ such that $B(N_i) \subseteq N_{i-1}$ for each $i = 1, \ldots, \ell$.
- 10. If \mathcal{S} is *j*-independent, then $B(\mathcal{S})$ is (j-1)-independent.⁷
- 11. There is a basis S of the vector space U, such that if $u \in S$ and $B^i u \neq 0$, then $B^i u \in S$.⁸

We now return to the situation of a linear operator $A: V \to V$, a generalized eigenspace V_{λ} and the nilpotent operator $B: V_{\lambda} \to V_{\lambda}$ given by $B = A - \lambda I$. We still consider the weak flag $N_i = \ker(B^i)$ defined above.

- 12. The generalized eigenspace V_{λ} admits a basis that is a union of λ -chains of A.
- 13. Given a basis of V_{λ} that is a union of λ -chains, the number of chains of length k is dim $N_k \dim N_{k-1}$.

We now have all of the pieces necessary to conclude the result of the Jordan Normal Form Theorem!

Commuting Operators

Closely related to the Jordan Normal Form Theorem is another result, describing a decomposition of A:

Jordan-Chevalley Decomposition Theorem. Given a linear operator $A : V \to V$, there is a unique way to write A = B + D, where D is diagonalizable, B is nilpotent and BD = DB.

Before we prove this, we need to investigate a couple of more general results about commuting operators. Consider two operators $S: U \to U$ and $T: U \to U$ that satisfy ST = TS.

14. If S and T are nilpotent, then S + T is nilpotent.¹⁰

⁷If $a_1Bv_1 + \dots + a_mBv_m \in N_{j-2}$, then $a_1v_1 + \dots + a_mv_m \in N_{j-1}$.

⁸Given a *j*-basis S_j , we can enlarge $B(S_j)$ to a (j-1)-basis. Start with an ℓ -basis and iterate this process.

⁹If n_k is the number of chains of length k, then we have dim $N_j = n_j + n_{j+1} + \cdots + n_\ell$ for each $j = 1, \ldots, \ell$. ¹⁰If $S^n = 0$ and $T^n = 0$, then $(S + T)^{2n} = 0$.

- 15. The eigenspaces of S are T-invariant.
- 16. Now suppose that S and T are diagonalizable and let $U = U_{\mu_1} \oplus \cdots \oplus U_{\mu_m}$ be the decomposition into eigenspaces of S. For each $i = 1, \ldots, m$, let $P_i : U \to U_{\mu_i}$ be the projection map out of this direct sum.
 - (a) For every $i = 1, \ldots, m$, we have $TP_i = P_i T$.¹¹
 - (b) If $u \in U$ is an eigenvector of T, then $P_i u$ is a common eigenvector of S and T.
 - (c) Every eigenvector of T can be written as a sum of common eigenvectors of S and T.
 - (d) The vector space U is spanned by common eigenvectors of S and T.
 - (e) There is a basis for U in which both S and T are diagonal.

This proves that if S and T are diagonalizable, then so is S + T (under the assumption ST = TS).

Recall the decomposition $V = V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_n}$ into generalized eigenspaces of A. We define a diagonalizable linear operator $D: V \to V$ by requiring that $D = \lambda I$ when restricted to the generalized eigenspace V_{λ} .

- 17. If a linear operator $B: V \to V$ commutes with A, then it commutes with D^{12} .
- 18. The operator B = A D is nilpotent and BD = DB.¹³

This proves existence of a Jordan-Chevalley decomposition, but we also need to show uniqueness. As such, suppose that we also have A = B' + D', where D' is diagonalizable, B' is nilpotent and B'D' = D'B'.

- 19. The operators B, D, B' and D' all commute with each other.¹⁴
- 20. We have B B' = D' D = 0, so the decomposition is unique.¹⁵

This concludes the proof of the Jordan-Chevalley Decomposition Theorem!

¹¹It suffices to show that $TP_i u = P_i T u$ when $u \in U_j$, for each j = 1, ..., n. If $u \in U_j$ and $i \neq j$, then $P_i u = 0$. ¹²If AB = BA, then each V_{λ} is *B*-invariant.

¹³Verify nilpotency on each V_{λ} individually.

¹⁴First show that D commutes with B' and D'.

¹⁵The only operator that is both diagonalizable and nilpotent is 0.