An Exotic Sphere

Nikhil Sahoo

Here, I will describe Milnor's construction of an exotic smooth structure on S^{7}. My goal is to write out the details that are elided in [M1]. Since only a couple of years separate the discovery and classification of exotic 7 -spheres, I will not worry about the invariant constructed in [M1], but rather follow the heuristic outlined in [M5]. I hope this will make my exposition a little more readable.

Contents

1 Tautological Bundles 2
1.1 Projective spaces 2
1.2 Calculating $p_{1}\left(\gamma_{2}^{\text {HI }}\right)$ 3
2 Candidate Spaces 5
2.1 The clutching construction 5
2.2 A sample clutching function 8
2.3 The homomorphism property 9
2.4 Oriented S^{3}-bundles over S^{4} 11
3 Not Diffeomorphic. 13
3.1 The signature formula 13
3.2 Calculating $\sigma(X)$ 13
3.3 Calculating $p_{1}(T X)$ 14
4 ... But Homeomorphic 15
4.1 Detecting topological spheres 15
4.2 Defining a useful function 16
4.3 Calculating critical points 17
5 Appendices 18
5.1 Rotations in \mathbb{R}^{4} via quaternions 18
5.2 Why did we assume $h+\ell=1$? 20
5.3 A fun fact about $\left.\gamma_{2}^{\mathbb{H}}\right|_{\mathbb{C}}$ 22

1 Tautological Bundles

1.1 Projective spaces

In this first section, we will work with one of the associative division algebras

$$
\mathbb{F}=\mathbb{R}, \mathbb{C} \text { or } \mathbb{H}, \text { with dimension } n=\operatorname{dim}_{\mathbb{R}} \mathbb{F}=1,2 \text { or } 4 .
$$

Since \mathbb{H} is not commutative, we must be a little careful with our "linear algebra." For our purposes, an \mathbb{F}-vector space is a right \mathbb{F}-module; the prototype is \mathbb{F}^{k}, where scalars act by component-wise multiplication on the right. Since a linear subspace needs to be invariant under right-multiplication, any non-zero vector $v \in \mathbb{F}^{k}$ spans a right-line $v \mathbb{F}$. The projective space $\mathbb{F P}^{k}$ is defined to be the set of right-lines in \mathbb{F}^{k+1}. If $v=\left(v_{0}, v_{1}, \ldots, v_{k}\right) \in \mathbb{F}^{k+1}$ is non-zero, we write

$$
v \mathbb{F}=\left[v_{0}: v_{1}: \cdots: v_{k}\right] .
$$

Notice that $\left[v_{0}: v_{1}: \cdots: v_{k}\right]=\left[w_{0}: w_{1}: \cdots: w_{k}\right]$ if and only if there exists some scalar $\lambda \in \mathbb{F}$ such that $v_{i}=w_{i} \lambda$ for all $i=0,1, \ldots, k$. We have an inclusion

$$
\mathbb{F}^{k} \hookrightarrow \mathbb{F P}^{k} \quad \text { given by } \quad\left(v_{1}, \ldots, v_{k}\right) \mapsto\left[1: v_{1}: \cdots: v_{k}\right]
$$

The lines that are not in the image of this map are precisely those of the form

$$
\left[0: v_{1}: \cdots: v_{k}\right]
$$

i.e. lines contained in $\{0\} \times \mathbb{F}^{k}$. Therefore, we can decompose $\mathbb{F P}^{k}=\mathbb{F}^{k} \sqcup \mathbb{F P}^{k-1}$ as a disjoint union ${ }^{1}$ of $\mathbb{F P}^{k-1}$ with the open $k n$-cell \mathbb{F}^{k}. Taking $t \in \mathbb{R}$, we have

$$
\lim _{t \rightarrow \infty}\left[1: v_{1} t: \cdots: v_{k} t\right]=\lim _{t \rightarrow \infty}\left[\frac{1}{t}: v_{1}: \cdots: v_{k}\right]=\left[0: v_{1}: \cdots: v_{k}\right]
$$

This shows that $\mathbb{F P}^{k}$ is formed from $\mathbb{F} \mathbb{P}^{k-1}$ by the attachment of a closed $k n$-cell, where the attaching map takes a point $v \in S^{k n-1} \subseteq \mathbb{F}^{k}$ to the line $v \mathbb{F} \in \mathbb{F P}^{k-1}$. Inductively, we can see that $\mathbb{F P}^{k}$ is homeomorphic to a CW complex with exactly one cell in each dimension $0, n, 2 n, \ldots, k n$. For example, we have

$$
\mathbb{F P}^{0}=\text { point }, \quad \mathbb{F} \mathbb{P}^{1}=S^{n}, \quad \mathbb{F} \mathbb{P}^{2}=D^{2 n} \cup_{f} S^{n}
$$

where $f: S^{2 n-1} \rightarrow S^{n}$ is an attaching map. ${ }^{2}$ We can think of $\mathbb{F P}^{1}=\mathbb{F} \cup\{\infty\}$ as a one-point compactification of our scalars, by associating a slope $\lambda \in \mathbb{F}$ to

$$
[1: \lambda]=\left\{(x, y) \in \mathbb{F}^{2}: y=\lambda x\right\} \in \mathbb{F P}^{1}
$$

[^0]This inclusion misses the line $[0: 1]=\left\{(x, y) \in \mathbb{F}^{2}: x=0\right\}$ with "infinite slope."
To see that the attaching map $f: S^{k n-1} \rightarrow \mathbb{F} \mathbb{P}^{k-1}$ is a unit sphere bundle, ${ }^{3}$ we consider the tautological bundle $\gamma_{k}^{\mathbb{F}}$ with total space

$$
E\left(\gamma_{k}^{\mathbb{F}}\right)=\left\{(v, \ell) \in \mathbb{F}^{k} \times \mathbb{F P}^{k-1}: v \in \ell\right\}
$$

This space has projections to the factors \mathbb{F}^{k} and $\mathbb{F P}^{k-1}$, so we get a diagram

For a point $(v, \ell) \in S\left(\gamma_{k}^{\mathbb{F}}\right)$ in the unit sphere bundle, we have $|v|=1$ and $\ell=v \mathbb{F}$, so the projection $E\left(\gamma_{k}^{\mathbb{F}}\right) \rightarrow \mathbb{F}^{k}$ restricts to a homeomorphism $S\left(\gamma_{k}^{\mathbb{F}}\right) \rightarrow S^{k n-1}$. Under this identification, the other projection $E\left(\gamma_{k}^{\mathbb{F}}\right) \rightarrow \mathbb{F P}^{k-1}$ restricts to our attaching map $f(v)=v \mathbb{F}$. As an \mathbb{R}-vector bundle, the rank of $\gamma_{k}^{\mathbb{F}}$ is $n=\operatorname{dim}_{\mathbb{R}} \mathbb{F}$, so our unit sphere bundle ${ }^{4}$ has the form

$$
S^{n-1} \hookrightarrow S^{k n-1} \rightarrow \mathbb{F P}^{k-1}
$$

When $k=2$, the base space is also a sphere:

$$
S^{0} \hookrightarrow S^{1} \rightarrow \mathbb{R} \mathbb{P}^{1} \cong S^{1} \quad S^{1} \hookrightarrow S^{3} \rightarrow \mathbb{C P}^{1} \cong S^{2} \quad S^{3} \hookrightarrow S^{7} \rightarrow \mathbb{H}^{1} \cong S^{4}
$$

These bundles are called the "Hopf fibrations" and we will mainly be concerned with the quaternionic case, where we have now exhibited the standard 7 -sphere as a unit sphere bundle over S^{4}. To build some candidates for exotic 7 -spheres, we will use the unit sphere bundles for other vector bundles over S^{4}. But first, we need to perform one more calculation in the specific case of the bundle $\gamma_{2}^{\mathbb{H}}$.

1.2 Calculating $p_{1}\left(\gamma_{2}^{\mathbb{H}}\right)$

Viewing $\gamma_{2}^{\mathbb{H}}$ as a real vector bundle, we will show that $p_{1}\left(\gamma_{2}^{\mathbb{H}}\right)= \pm 2 \beta$, where β is a generator of $H^{4}\left(\mathbb{H} \mathbb{P}^{1}\right) \cong \mathbb{Z}$ and p_{1} is the first Pontryagin class. Our proof is mostly based on this explanation that Jason DeVito gave on StackExchange. The rest can be found in Chapter 14 of [M4] or Chapter 19 of [FF].

The inclusions $\mathbb{R} \subset \mathbb{C} \subset \mathbb{H}$ yield the forgetful functors in this diagram:

[^1]

Given a real vector bundle η, we can also form a complex vector bundle $\eta \otimes \mathbb{C}$. Composing this operation with the forgetful functor $\left.\right|_{\mathbb{R}}$ has the following effect:

$$
\left.(\eta \otimes \mathbb{C})\right|_{\mathbb{R}} \cong \eta \oplus \eta \quad \text { and }\left.\quad \xi\right|_{\mathbb{R}} \otimes \mathbb{C} \cong \xi \oplus \bar{\xi}
$$

where $\bar{\xi}$ is the conjugate bundle of ξ. The first Pontryagin class of a real vector bundle η is $p_{1}(\eta)=-c_{2}(\eta \otimes \mathbb{C})$, so if ξ is a complex vector bundle, then we have

$$
\begin{aligned}
-p_{1}\left(\left.\xi\right|_{\mathbb{R}}\right) & =c_{2}\left(\left.\xi\right|_{\mathbb{R}} \otimes \mathbb{C}\right)=c_{2}(\xi \oplus \bar{\xi}) \\
& =c_{2}(\xi) c_{0}(\bar{\xi})+c_{1}(\xi) c_{1}(\bar{\xi})+c_{0}(\xi) c_{2}(\bar{\xi})=2 c_{2}(\xi)-c_{1}(\xi)^{2}
\end{aligned}
$$

using the Whitney sum formula and $c_{i}(\bar{\xi})=(-1)^{i} c_{i}(\xi)$. Because $H^{2}\left(\mathbb{H} \mathbb{P}^{1}\right)=0$, we have $c_{1}\left(\left.\gamma_{2}^{\mathbb{H}}\right|_{\mathbb{C}}\right)=0$ and therefore

$$
p_{1}\left(\left.\gamma_{2}^{\mathbb{H}}\right|_{\mathbb{R}}\right)=-2 c_{2}\left(\left.\gamma_{2}^{\mathbb{H}}\right|_{\mathbb{C}}\right)
$$

To prove that $p_{1}\left(\left.\gamma_{2}^{\mathbb{H}}\right|_{\mathbb{R}}\right)= \pm 2 \beta$, it therefore suffices to show that $c_{2}\left(\left.\gamma_{2}^{\mathbb{H}}\right|_{\mathbb{C}}\right)= \pm \beta$, i.e. that this Chern class generates $H^{4}\left(\mathbb{H} \mathbb{P}^{1}\right)$.

We may consider \mathbb{H}^{2} as a 4-dimensional complex vector space, where i acts by right-multiplication. We then view $\mathbb{C P}^{3}$ as the space of complex lines in \mathbb{H}^{2} and we define a map $g: \mathbb{C P}^{3} \rightarrow \mathbb{H} \mathbb{P}^{1}$ by $g(\ell)=\ell \mathbb{H}=\ell \oplus \ell j$. Given any $L \in \mathbb{H P}^{1}$, we have $g^{-1}(L)=\left\{\ell \in \mathbb{C P}^{3}: \ell \subseteq L\right\} \cong \mathbb{C P}^{1}$, since L is 2 -dimensional over \mathbb{C}. Indeed, we can see that g is a $\mathbb{C P}^{1}$-bundle by viewing it as the "projectivization" of the complex vector bundle $\left.\gamma_{2}^{\mathbb{H}}\right|_{\mathbb{C}}$ (any local trivialization of $\left.\gamma_{2}^{\mathbb{H}}\right|_{\mathbb{C}}$ yields a local trivialization of g). Identifying $S^{2} \cong \mathbb{C P}^{1}$, we have an oriented sphere bundle, where the orientation comes from the complex structure on each fiber. Hence, we have a Gysin sequence, which includes the following useful isomorphism:

$$
0=H^{1}\left(\mathbb{H P}^{1}\right) \longrightarrow H^{4}\left(\mathbb{H} \mathbb{P}^{1}\right) \xrightarrow{g^{*}} H^{4}\left(\mathbb{C P}^{3}\right) \longrightarrow H^{2}\left(\mathbb{H}^{1}\right)=0
$$

Thus $c_{2}\left(\left.\gamma_{2}^{\mathbb{H}}\right|_{\mathbb{C}}\right)$ generates $H^{4}\left(\mathbb{H} \mathbb{P}^{1}\right)$ if and only if $g^{*} c_{2}\left(\left.\gamma_{2}^{\mathbb{H}}\right|_{\mathbb{C}}\right)$ generates $H^{4}\left(\mathbb{C P}^{3}\right)$. Below, we will show that $\left.g^{*} \gamma_{2}^{\mathbb{H}}\right|_{\mathbb{C}} \cong \gamma_{3}^{\mathbb{C}} \oplus \overline{\gamma_{3}^{\mathbb{C}}}$, so the Whitney sum formula gives

$$
\begin{aligned}
g^{*} c_{2}\left(\gamma_{2}^{\mathbb{H}} \mid \mathbb{C}\right) & =c_{2}\left(g^{*} \gamma_{2}^{\mathbb{H}} \mid \mathbb{C}\right)=c_{2}\left(\gamma_{3}^{\mathbb{C}} \oplus \overline{\gamma_{3}^{\mathbb{C}}}\right) \\
& =c_{0}\left(\gamma_{3}^{\mathbb{C}}\right) c_{2}\left(\overline{\gamma_{3}^{\mathbb{C}}}\right)+c_{1}\left(\gamma_{3}^{\mathbb{C}}\right) c_{1}\left(\overline{\gamma_{3}^{\mathbb{C}}}\right)+c_{2}\left(\gamma_{3}^{\mathbb{C}}\right) c_{0}\left(\overline{\gamma_{3}^{\mathbb{C}}}\right)=-c_{1}\left(\gamma_{3}^{\mathbb{C}}\right)^{2}
\end{aligned}
$$

This class indeed generates $H^{4}\left(\mathbb{C P}^{3}\right)$, since we know that $H^{*}\left(\mathbb{C P}^{3}\right) \cong \mathbb{Z}[a] /\left(a^{4}\right)$ with the generator a corresponding to $c_{1}\left(\gamma_{3}^{\mathbb{C}}\right)$. It remains to prove the promised isomorphism of complex vector bundles over $\mathbb{C P}^{3}$. To do so, we define a mapping

by sending a pair of vectors $v, w \in \ell$ (with $\ell \in \mathbb{C P}^{3}$) to the vector $v+w j \in \ell \oplus \ell j$. The $\operatorname{map} G$ is an \mathbb{R}-linear isomorphism on fibers; because i and j anti-commute, we can see that G is \mathbb{C}-linear in v and \mathbb{C}-antilinear in w. Therefore, it induces an isomorphism $\left.\gamma_{3}^{\mathbb{C}} \oplus \overline{\gamma_{3}^{\mathbb{C}}} \cong g^{*} \gamma_{2}^{\mathbb{H}}\right|_{\mathbb{C}}$, as desired.

2 Candidate Spaces

2.1 The clutching construction

In this section, we outline a method of describing oriented vector bundles over a sphere. Choosing a pair of antipodes $p_{ \pm} \in S^{k}$, we can write $S^{k}=\mathbb{R}_{+}^{k} \cup \mathbb{R}_{-}^{k}$, where the sets $\mathbb{R}_{ \pm}^{k}=S^{k} \backslash p_{ \pm}$are identified with k-dimensional Euclidean space. Explicitly, these two copies of \mathbb{R}^{k} are glued by the map

$$
\begin{array}{rl}
\mathbb{R}_{+}^{k} \backslash 0 \longrightarrow & \mathbb{R}_{-}^{k} \backslash 0 \\
u & u /|u|^{2}
\end{array}
$$

This becomes even simpler if we restrict to unit disks and write $S^{k}=D_{+}^{k} \cup D_{-}^{k}$, where the two disks are glued by the identity $S_{+}^{k-1}=S_{-}^{k-1}$ on their boundaries. In what follows, we will extend these gluings to define vector bundles over S^{k}.

Given a smooth map $\varphi: S^{k-1} \rightarrow \mathrm{SO}(n)$, which is called a clutching function, we can define a vector bundle over S^{k} by gluing together trivial bundles over $\mathbb{R}_{ \pm}^{k}$ in a way that lifts the above gluing and uses φ to define a transition map:

$$
\begin{aligned}
& E=\left(\mathbb{R}_{+}^{k} \times \mathbb{R}^{n}\right) \cup\left(\mathbb{R}_{-}^{k} \times \mathbb{R}^{n}\right) \\
& \downarrow \\
& S^{k}=\mathbb{R}_{+}^{k} \cup \mathbb{R}_{-}^{k}
\end{aligned}
$$

Concretely, the gluing is defined by the following map:

$$
\begin{aligned}
& \mathbb{R}_{+}^{k} \backslash 0 \times \mathbb{R}^{n} \longrightarrow \mathbb{R}_{-}^{k} \backslash 0 \times \mathbb{R}^{n} \\
& \quad(u, v) \longrightarrow\left(\frac{u}{|u|^{2}}, \varphi\left(\frac{u}{|u|}\right) v\right)
\end{aligned}
$$

Because φ is smooth and takes values in the orientation-preserving isomorphisms of the vector space \mathbb{R}^{n}, we can see that this defines a smooth, oriented \mathbb{R}^{n}-bundle over S^{k} (note that the gluing is over an open subset of S^{k}). We can also restrict to the gluing $S^{k}=D_{+}^{k} \cup D_{-}^{k}$ to give an equivalent definition of the total space:

$$
\begin{aligned}
& E=\left(D_{+}^{k} \times \mathbb{R}^{n}\right) \cup\left(D_{-}^{k} \times \mathbb{R}^{n}\right) \\
& \downarrow \\
& S^{k}=D_{+}^{k} \cup D_{-}^{k}
\end{aligned}
$$

This is defined by a simple gluing map, to which we give more explicit notation:

$$
\begin{aligned}
\bar{\varphi}: S_{+}^{k-1} \times \mathbb{R}^{n} \longrightarrow & S_{-}^{k-1} \times \mathbb{R}^{n} \\
(u, v) \longmapsto & (u, \varphi(u) v)
\end{aligned}
$$

We introduce both frameworks, because the latter is often easier to work with, but the former better elucidates the smooth structure and local trivializability.

Suppose that we have a homotopy $\Phi: S^{k-1} \times I \rightarrow \mathrm{SO}(n)$, where $I=[0,1]$ is the unit interval. We can repeat this process with an extra parameter $t \in I$, to get an oriented \mathbb{R}^{n}-bundle over $S^{k} \times I$. Explicitly, we have another a gluing:

$$
\begin{aligned}
& E=\left(\mathbb{R}_{+}^{k} \times I \times \mathbb{R}^{n}\right) \cup\left(\mathbb{R}_{-}^{k} \times I \times \mathbb{R}^{n}\right) \\
& \downarrow \\
& S^{k} \times I=\left(\mathbb{R}_{+}^{k} \times I\right) \cup\left(\mathbb{R}_{-}^{k} \times I\right)
\end{aligned}
$$

The gluing defining the total space of this bundle is given by:

$$
\begin{aligned}
\mathbb{R}_{+}^{k} \backslash 0 \times I \times \mathbb{R}^{n} \longrightarrow & \mathbb{R}_{-}^{k} \backslash 0 \times I \times \mathbb{R}^{n} \\
(u, t, v) & \longmapsto\left(\frac{u}{|u|^{2}}, t, \varphi\left(\frac{u}{|u|}, t\right) v\right)
\end{aligned}
$$

To get the gluing defining the base space, we simply ignore the last component. Let $\xi: E \rightarrow S^{k} \times I$ denote the bundle so defined and let $\iota_{t}: S^{k} \hookrightarrow S^{k} \times I$ denote the inclusion of $S^{k} \times\{t\} \subseteq S^{k} \times I$. Then the restricted bundle $\iota_{t}^{*} \xi$ is clearly given by the clutching function $\Phi \circ \iota_{t}$. The homotopy-invariance of pullback bundles yields $\iota_{0}^{*} \xi \cong \iota_{1}^{*} \xi$, so the isomorphism class of our oriented \mathbb{R}^{n}-bundle depends only on the homotopy class of the clutching function. Therefore, the clutching construction defines a function ${ }^{5}$ of the form

$$
\pi_{k-1} \mathrm{SO}(n) \longrightarrow\left\{\begin{array}{c}
\text { isomorphism } \\
\text { classes of oriented } \\
\mathbb{R}^{n} \text {-bundles over } S^{k}
\end{array}\right\}
$$

[^2]Since the clutching construction yields oriented bundles, we might ask how to modify a clutching function to get the same bundle with opposite orientation. Consider a clutching function $\varphi: S^{k-1} \rightarrow \mathrm{SO}(n)$ and an orientation-reversing transformation $T \in \mathrm{O}(n) \backslash \mathrm{SO}(n)$. We can conjugate to define another clutching function $\varphi^{\prime}=T \varphi T^{-1}$. Let E and E^{\prime} be the total spaces of the vector bundles corresponding respectively to φ and φ^{\prime}. Consider the following bundle maps:

$$
\begin{aligned}
D_{+}^{k} \times \mathbb{R}^{n} & D_{+}^{k} \times \mathbb{R}^{n} & D_{-}^{k} \times \mathbb{R}^{n} \longrightarrow D_{-}^{k} \times \mathbb{R}^{n} \\
(u, v) & (u, T v) & (u, v) \longmapsto(u, T v)
\end{aligned}
$$

These maps clearly reverse the orientation of each fiber. To see that they glue together to form an orientation-reversing vector bundle isomorphism $E \rightarrow E^{\prime}$, simply note that the following diagram commutes by the definition of φ^{\prime} :

Therefore, the clutching functions φ and $\varphi^{\prime}=T \varphi T^{-1}$ define the same bundle, but with opposite orientations. We will make use of this fact in $\S 2.4$ below.

While describing this construction, we have really belabored the smoothness, because the whole point of these notes is to construct certain smooth manifolds. But there is a more general clutching construction, which starts with a compact Hausdorff space X and uses a clutching function $\varphi: X \rightarrow \mathrm{SO}(n)$ to construct an oriented \mathbb{R}^{n}-bundle over the reduced suspension ΣX. To form this bundle, we start with trivial bundles over two reduced cones $C X_{ \pm}$and lift the gluing $\Sigma X=C X_{+} \cup_{X} C X_{-}$to a gluing of fibers:

$$
\begin{aligned}
& E=\left(C X_{+} \times \mathbb{R}^{n}\right) \cup\left(C X_{-} \times \mathbb{R}^{n}\right) \\
& \downarrow \\
& \Sigma X=C X_{+} \cup C X_{-}
\end{aligned}
$$

Just as before, the gluing of the total space is given by a straightforward map:

$$
\begin{aligned}
\bar{\varphi}: X_{+} \times \mathbb{R}^{n} & X_{-} \times \mathbb{R}^{n} \\
(u, v) & (u, \varphi(u) v)
\end{aligned}
$$

We will not repeat all of the details in this setting, but suffice to note that this construction is natural, in the following sense. Suppose Y is another compact

Hausdorff space and $g: Y \rightarrow X$ is a continuous map. Then we can define vector bundles ξ and η over ΣX and ΣY, using the clutching functions φ and $\varphi \circ g$, respectively. Using the suspended map $\Sigma g: \Sigma Y \rightarrow \Sigma X$, we can then write down an isomorphism $\eta \cong \Sigma g^{*} \xi$. This isomorphism is defined by a bundle map, which is an isomorphism on every fiber:

To define the map between the total spaces, we start with the maps

$$
C g \times \operatorname{Id}_{\mathbb{R}^{n}}: C Y_{ \pm} \times \mathbb{R}^{n} \longrightarrow C X_{ \pm} \times \mathbb{R}^{n}
$$

and check that they are compatible with the gluings that define $E(\eta)$ and $E(\xi)$:

A more detailed explanation of the general construction can be found in [A]. ${ }^{6}$

2.2 A sample clutching function

We now describe a clutching function for the bundle $\gamma_{2}^{\mathbb{H}}$ over S^{4}. In $\S 2.4$ below, we will see how our knowledge of this clutching function and the corresponding Pontryagin class yields knowledge of various other Pontryagin classes.

If $D_{ \pm}^{4} \subseteq \mathbb{H}$ are two copies of the unit disk, we can write the decomposition $\mathbb{H}^{1} \cong S^{4}=D_{+}^{4} \cup D_{-}^{4}$ very concretely, via the inclusion maps:

$$
\begin{array}{rl}
D_{+}^{4} \longrightarrow \mathbb{H}^{1} & D_{-}^{4} \longrightarrow \mathbb{H}^{1} \\
u & u \longmapsto[1: u]
\end{array} \quad u \longmapsto[\bar{u}: 1]
$$

[^3]$$
[X, G]=[X, \Omega B G]=[\Sigma X, B G] .
$$

For a unit quaternion $u \in S^{3}$, the quaternionic conjugate \bar{u} is also the inverse. This implies that $[1: u]=\left[u^{-1}: 1\right]=[\bar{u}: 1]$, so the two inclusions indeed agree on the unit sphere. We now define a function $\varphi: S^{3} \rightarrow \mathrm{SO}(4)$ given by

$$
\varphi(u): v \mapsto u v,
$$

where we view both u and v as quaternions. Then this clutching function defines an \mathbb{R}^{4}-bundle $\xi: E \rightarrow \mathbb{H} \mathbb{P}^{1}$, which is isomorphic to the tautological bundle $\gamma_{2}^{\mathbb{H}}$. To see this, consider the following diagram:

This diagram commutes because $(\bar{u} u v, u v)=(v, u v)$ for any $u \in S^{3}$ and $v \in \mathbb{H}$. Since the map $\bar{\varphi}: S_{+}^{3} \times \mathbb{H} \rightarrow S_{-}^{3} \times \mathbb{H}$ is the gluing used to define the bundle E, the above trivializations of $\gamma_{2}^{\mathbb{H}}$ over $D_{ \pm}^{4} \subseteq \mathbb{H} \mathbb{P}^{1}$ glue to form a map $E \rightarrow E\left(\gamma_{2}^{\mathbb{H}}\right)$, which is an isomorphism $\xi \cong \gamma_{2}^{\mathbb{H}}$.

2.3 The homomorphism property

Because $\pi_{k-1} \mathrm{SO}(n)$ is a group whenever $k>1$, we might ask how the clutching construction reflects this group structure. Unfortunately, there is no obvious group structure on isomorphism classes of bundles with which we can compare. ${ }^{7}$ But if we fix a characteristic class $c \in \widetilde{H}^{*}\left(G_{n}\left(\mathbb{R}^{\infty}\right) ; \mathbb{Z}\right)$, then the composition

$$
\pi_{k-1} \mathrm{SO}(n) \xrightarrow{\text { clutching }}\left\{\begin{array}{c}
\text { isomorphism } \\
\text { classes of oriented } \\
\mathbb{R}^{n} \text {-bundles over } S^{k}
\end{array}\right\} \xrightarrow{c} \widetilde{H}^{*}\left(S^{k}\right)
$$

is a homomorphism whenever $k>1$, as we will now prove. ${ }^{8}$

[^4]In proving this, all of our spaces will implicitly be pointed. To begin with, let $\Psi: S^{k-1} \rightarrow S^{k-1} \vee S^{k-1}$ be the quotient defined by collapsing an equator $S^{k-2} \subseteq S^{k-1}$ down to a point. Applying the reduced suspension functor yields an analogous map $\Sigma \Psi: S^{k} \rightarrow S^{k} \vee S^{k}$, which collapses the suspended equator

$$
\Sigma S^{k-2} \subseteq \Sigma S^{k-1}=S^{k}
$$

down to a point. Here, we are using the fact that $\Sigma\left(S^{k-1} \vee S^{k-1}\right)=S^{k} \vee S^{k}$.
Let $\iota_{1}, \iota_{2}: S^{k} \hookrightarrow S^{k} \vee S^{k}$ be the inclusions of the two spheres into the wedge sum and let $\pi_{1}, \pi_{2}: S^{k} \vee S^{k} \rightarrow S^{k}$ be the quotients collapsing one of the spheres down to a point. We label these maps so that

$$
\begin{array}{ll}
\pi_{1} \circ \iota_{1}=\mathrm{Id}_{S^{k}} & \pi_{1} \circ \iota_{2}=\mathrm{constant} \\
\pi_{2} \circ \iota_{2}=\mathrm{Id}_{S^{k}} & \pi_{2} \circ \iota_{1}=\mathrm{constant}
\end{array}
$$

The maps $\pi_{j} \circ \Sigma \Psi: S^{k} \rightarrow S^{k}$ are given by collapsing one of the hemispheres bounded by ΣS^{k-2} to a point; these compositions are both homotopic to $\mathrm{Id}_{S^{k}}$. All of these maps are illustrated in the following diagram:

Applying the reduced singular cohomology functor, this diagram becomes:

The homomorphisms ι_{1}^{*} and ι_{2}^{*} are the natural projections out of the product, by the Eilenberg-Steenrod axiom of additivity. Then we can see that π_{1}^{*} and π_{2}^{*}
and we could just as well have chosen a characteristic class that does depend on orientation, such as the Euler class e. Moreover, we could have used a characteristic class valued in any (additive) reduced cohomology theory. In particular, we can define a homomorphism

$$
\pi_{k-1} \mathrm{SO}(n) \rightarrow \widetilde{\mathrm{KO}}\left(S^{k}\right)
$$

by taking a vector bundle to its equivalence class. This is an isomorphism for all $n>k>1$.
are the natural inclusions into the direct sum, because

$$
\begin{array}{ll}
\iota_{1}^{*} \circ \pi_{1}^{*}=\mathrm{Id}_{\mathbb{Z}} & \iota_{1}^{*} \circ \pi_{2}^{*}=0 \\
\iota_{2}^{*} \circ \pi_{2}^{*}=\mathrm{Id}_{\mathbb{Z}} & \iota_{2}^{*} \circ \pi_{1}^{*}=0
\end{array}
$$

We can now confirm that the map $\Sigma \Psi^{*}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}$ simply adds the two integers:

$$
\begin{aligned}
\Sigma \Psi^{*}(v) & =\Sigma \Psi^{*}\left(\pi_{1}^{*} \iota_{1}^{*}(v)+\pi_{2}^{*} \iota_{2}^{*}(v)\right) \\
& =\left(\pi_{1} \circ \Sigma \Psi\right)^{*} \iota_{1}^{*}(v)+\left(\pi_{2} \circ \Sigma \Psi\right)^{*} \iota_{2}^{*}(v)=\iota_{1}^{*}(v)+\iota_{2}^{*}(v)
\end{aligned}
$$

Here, we have used the fact that $\pi_{i} \circ \Sigma \Psi$ is homotopic to $\operatorname{Id}_{S^{k}}$ (for $i=1$ or 2).
Now suppose that we have two clutching functions $\varphi_{1}, \varphi_{2}: S^{k-1} \rightarrow \mathrm{SO}(n)$, both of which send the basepoint of S^{k-1} to the identity matrix Id $\in \mathrm{SO}(n)$. Let ξ_{1} and ξ_{2} be the vector bundles over S^{k} defined by the clutching functions φ_{1} and φ_{2}, respectively. We also define a bundle $\xi_{1} \vee \xi_{2}$ over $S^{k} \vee S^{k}$ by gluing the fibers of ξ_{1} and ξ_{2} over the basepoint of $S^{k} .{ }^{9}$ Then it is clear that

$$
\iota_{1}^{*}\left(\xi_{1} \vee \xi_{2}\right)=\xi_{1} \quad \text { and } \quad \iota_{2}^{*}\left(\xi_{1} \vee \xi_{2}\right)=\xi_{2}
$$

But we get the same vector bundle if we first take a wedge sum and then perform the clutching construction, ${ }^{10}$ so $\xi_{1} \vee \xi_{2}$ is described by the clutching function

$$
\varphi_{1} \vee \varphi_{2}: S^{k-1} \vee S^{k-1} \rightarrow \mathrm{SO}(n)
$$

In $\pi_{k-1} \mathrm{SO}(n)$, the sum of φ_{1} and φ_{2} is represented by the map $\left(\varphi_{1} \vee \varphi_{2}\right) \circ \Psi$; we let ξ denote the vector bundle over S^{k} defined by this clutching function. By the naturality property stated at the end of $\S 2.1$, we get $\xi \cong \Sigma \Psi^{*}\left(\xi_{1} \vee \xi_{2}\right)$. We can now conclude the desired homomorphism property:

$$
\begin{aligned}
c(\xi) & =c\left(\Sigma \Psi^{*}\left(\xi_{1} \vee \xi_{2}\right)\right)=\Sigma \Psi^{*} c\left(\xi_{1} \vee \xi_{2}\right) \\
& =\iota_{1}^{*} c\left(\xi_{1} \vee \xi_{2}\right)+\iota_{2}^{*} c\left(\xi_{1} \vee \xi_{2}\right) \\
& =c\left(\iota_{1}^{*}\left(\xi_{1} \vee \xi_{2}\right)\right)+c\left(\iota_{2}^{*}\left(\xi_{1} \vee \xi_{2}\right)\right)=c\left(\xi_{1}\right)+c\left(\xi_{2}\right)
\end{aligned}
$$

2.4 Oriented S^{3}-bundles over S^{4}

We now know enough about the clutching construction to focus in on the case that is of interest to us: oriented \mathbb{R}^{4}-bundles over S^{4}. Their unit sphere bundles are oriented 7 -manifolds, which we will take as candidates for exotic 7 -spheres.

[^5]Consider the mapping $\Phi: S^{3} \times S^{3} \rightarrow \mathrm{SO}(4)$ defined by $\Phi(x, y): v \mapsto x v y$, where we identify $\mathbb{R}^{4}=\mathbb{H}$ and view $S^{3} \subseteq \mathbb{H}$ as the group of unit quaternions. This induces a homomorphism ${ }^{11}$

$$
\mathbb{Z} \oplus \mathbb{Z} \cong \pi_{3}\left(S^{3} \times S^{3}\right) \xrightarrow{\Phi_{*}} \pi_{3} \mathrm{SO}(4)
$$

For any $(h, \ell) \in \mathbb{Z} \oplus \mathbb{Z}$, the corresponding element of $\pi_{3}\left(S^{3} \times S^{3}\right)$ is the homotopy class of the map $S^{3} \rightarrow S^{3} \times S^{3}$ defined by $u \mapsto\left(u^{h}, u^{\ell}\right)$. The homomorphism $\mathbb{Z} \oplus \mathbb{Z} \rightarrow \pi_{3} \mathrm{SO}(4)$ therefore sends any pair $(h, \ell) \in \mathbb{Z} \oplus \mathbb{Z}$ to the homotopy class of the $\operatorname{map} \varphi_{h, \ell}: S^{3} \rightarrow \mathrm{SO}(4)$ given by

$$
\varphi_{h, \ell}(u): v \mapsto u^{h} v u^{\ell}
$$

This clutching function defines an oriented \mathbb{R}^{4}-bundle $\xi_{h, \ell}$ over S^{4}. Notice that

$$
\overline{\varphi_{h, \ell}(u) \bar{v}}=\overline{u^{h} \bar{v} u^{\ell}}=\bar{u}^{\ell} v \bar{u}^{h}=u^{-\ell} v u^{-h}=\varphi_{-\ell,-h}(u) v .
$$

Because the transformation $T \in \mathrm{O}(4)$ given by $T(v)=\bar{v}$ is orientation-reversing, the results of $\S 2.1$ show that the two clutching functions $\varphi_{h, \ell}$ and $\varphi_{-\ell,-h}$ define the same bundle, but with opposite orientations. It follows immediately that

$$
p_{1}\left(\xi_{h, \ell}\right)=p_{1}\left(\xi_{-\ell,-h}\right)
$$

From $\S 2.3$, we know that the map $(h, \ell) \mapsto p_{1}\left(\xi_{h, \ell}\right)$, given by the composition

$$
\mathbb{Z} \oplus \mathbb{Z} \longrightarrow \pi_{3} \mathrm{SO}(4) \longrightarrow\left\{\begin{array}{c}
\text { isomorphism } \\
\text { classes of oriented } \\
\mathbb{R}^{4} \text {-bundles over } S^{4}
\end{array}\right\} \xrightarrow{p_{1}} H_{4}\left(S^{4}\right)
$$

is a homomorphism. Taking β to be a generator of $H^{4}\left(S^{4}\right) \cong \mathbb{Z}$, we then have

$$
p_{1}\left(\xi_{h, \ell}\right)=(a h+b \ell) \beta
$$

for some $a, b \in \mathbb{Z}$. We can immediately see that $-b=a$, because

$$
a \beta=p_{1}\left(\xi_{1,0}\right)=p_{1}\left(\xi_{0,-1}\right)=-b \beta
$$

Moreover, we calculated in $\S 2.2$ that the bundle $\gamma_{2}^{\mathbb{H}}$ is described by the clutching function $\varphi_{1,0}$. By the calculation from $\S 1.2$, it follows that $a= \pm 2$, because

$$
a \beta=p_{1}\left(\xi_{1,0}\right)=p_{1}\left(\gamma_{2}^{\mathbb{H}}\right)= \pm 2 \beta .
$$

Therefore, we have calculated ${ }^{12}$ the first Pontryagin class $p_{1}\left(\xi_{h, \ell}\right)= \pm 2(h-\ell) \beta$.
The sphere bundles $S\left(\xi_{h, \ell}\right)$ are oriented 7 -manifolds, which we take as our candidates for exotic 7 -spheres. In the following two sections, we will determine some conditions on $(h, \ell) \in \mathbb{Z} \oplus \mathbb{Z}$ that determine when $S\left(\xi_{h, \ell}\right)$ is homeomorphic, but not diffeomorphic to S^{7}. In particular, we will use the calculation of $p_{1}\left(\xi_{h, \ell)}\right.$ to identify situations in which $S\left(\xi_{h, \ell}\right)$ and S^{7} cannot be diffeomorphic.

[^6]
3 Not Diffeomorphic. . .

3.1 The signature formula

Let X be a smooth, closed, oriented 8 -manifold. Then the composition

$$
H^{4}(X ; \mathbb{R}) \times H^{4}(X ; \mathbb{R}) \longrightarrow H^{8}(X ; \mathbb{R}) \xrightarrow{\frown[X]} \mathbb{R}
$$

is a symmetric bilinear form on the finite-dimensional vector space $H^{4}(X ; \mathbb{R})$, so it can be diagonalized. In terms of this form, the signature of X is defined as

$$
\sigma(X)=\#\{\text { positive eigenvalues }\}-\#\{\text { negative eigenvalues }\}
$$

This number is a homotopy invariant (it only depends on the cohomology ring), but Thom observed ${ }^{13}$ a fundamental relationship with certain smooth invariants, namely the Pontryagin numbers:

$$
\sigma(X)=\frac{1}{45}\left\langle 7 p_{2}(T X)-p_{1}(T X)^{2},[X]\right\rangle
$$

Rearranging, we can see that

$$
\left\langle p_{1}(T X)^{2},[X]\right\rangle=7\left\langle p_{2}(T X),[X]\right\rangle-45 \sigma(X)
$$

and hence $\left\langle p_{1}(T X)^{2},[X]\right\rangle \equiv 4 \sigma(X)(\bmod 7)$. Now suppose that $S\left(\xi_{h, \ell}\right)$ and S^{7} are diffeomorphic. Then we can define a smooth, closed, oriented 8 -manifold

$$
X=D\left(\xi_{h, \ell}\right) \cup_{S^{7}} D^{8}
$$

where we glue the disk D^{8} to the disk bundle $D\left(\xi_{h, \ell)}\right)$ by a smooth identification of their boundaries $S^{7} \cong S\left(\xi_{h, \ell}\right)$. With the right orientation, we will show that

$$
\sigma(X)=1 \quad \text { and } \quad\left\langle p_{1}(T X)^{2},[X]\right\rangle=4(h-\ell)^{2}
$$

This will imply that $4(h-\ell)^{2} \equiv 4(\bmod 7)$ and therefore $(h-\ell)^{2} \equiv 1(\bmod 7)$. For these calculations, we will abbreviate $S=S\left(\xi_{h, \ell}\right) \cong S^{7}$ and $D=D\left(\xi_{h, \ell}\right)$.

3.2 Calculating $\sigma(X)$

Since D^{8} is a cone on S^{7}, we can view the manifold X as the mapping cone for the inclusion $S \hookrightarrow D$, so we obtain a ring isomorphism $H^{*}(D, S) \cong \widetilde{H}^{*}(X)$. Writing u for the Thom class of $\xi_{h, \ell}$, we now consider the following diagram:

[^7]

The horizontal maps are isomorphisms by the Thom isomorphism theorem, while the vertical maps come from the long exact sequence of the pair (D, S). Since $S \cong S^{7}$ has trivial cohomology in degrees 3 and 4 , the middle vertical map is an isomorphism. We therefore have

$$
\mathbb{Z}=H^{0}(D) \cong H^{4}(D, S) \cong H^{4}(D) \cong H^{8}(D, S),
$$

with generators $u \in H^{4}(D, S)$ and $u^{2} \in H^{8}(D, S)$. Correspondingly, we have

$$
\mathbb{Z} \cong H^{4}(X) \cong H^{8}(X),
$$

with some generators $\alpha \in H^{4}(X)$ and $\alpha^{2} \in H^{8}(X)$. Choosing the appropriate orientation on X, we then have $\left\langle\alpha^{2},[X]\right\rangle=1$ and thus $\sigma(X)=1$.

3.3 Calculating $p_{1}(T X)$

Applying the Mayer-Vietoris sequence to the decomposition $X=D \cup_{S^{7}} D^{8}$ gives

$$
0=H^{3}\left(S^{7}\right) \longrightarrow H^{4}(X) \longrightarrow H^{4}(D) \oplus H^{4}\left(D^{8}\right) \longrightarrow H^{4}\left(S^{7}\right)=0
$$

Because $H^{4}\left(D^{8}\right)=0$, exactness implies that the inclusion $i: D \hookrightarrow X$ induces an isomorphism on H^{4}. The zero section $s: S^{4} \hookrightarrow D$ is a homotopy equivalence, so it also induces an isomorphism on H^{4}. Therefore, we have

$$
H^{4}(X) \cong H^{4}(D) \cong H^{4}\left(S^{4}\right) \cong \mathbb{Z}
$$

We will prove that $s^{*} i^{*} p_{1}(T X)=p_{1}\left(s^{*} i^{*} T X\right)= \pm 2(h-\ell) \beta$, where $\beta \in H^{4}\left(S^{4}\right)$ is a generator. It then follows that $p_{1}(T X)= \pm 2(h-\ell) \alpha$ and therefore that

$$
\left\langle p_{1}(T X)^{2},[X]\right\rangle=\left\langle 4(h-\ell)^{2} \alpha^{2},[X]\right\rangle=4(h-\ell)^{2} .
$$

Since D is a submanifold of X having full dimension, we have $i^{*} T X=T D$. Identifying S^{4} with its image under the zero section s, we have a splitting

$$
s^{*} T D \cong T S^{4} \oplus \xi_{h, \ell}
$$

into vectors tangent to the base and vectors tangent to the fiber (this applies to any smooth vector bundle). Because Pontryagin classes obey a Whitney sum formula up to 2-torsion and $H^{4}\left(S^{4}\right) \cong \mathbb{Z}$ is torsion-free, we now have

$$
\begin{aligned}
p_{1}\left(s^{*} i^{*} T X\right) & =p_{1}\left(T S^{4} \oplus \xi_{h, \ell}\right) \\
& =p_{0}\left(T S^{4}\right) \smile p_{1}\left(\xi_{h, \ell}\right)+p_{1}\left(T S^{4}\right) \smile p_{0}\left(\xi_{h, \ell}\right) \\
& =p_{1}\left(\xi_{h, \ell}\right)+p_{1}\left(T S^{4}\right)= \pm 2(h-\ell) \beta+p_{1}\left(T S^{4}\right)
\end{aligned}
$$

In the last equality, we have used the calculation from §2.4. Pontryagin numbers are an oriented cobordism invariant, so the fact that $\partial D^{5}=S^{4}$ implies that

$$
\left\langle p_{1}\left(T S^{4}\right),\left[S^{4}\right]\right\rangle=0
$$

and thus $p_{1}\left(T S^{4}\right)=0$. This completes the promised computations and shows that the existence of a diffeomorphism $S\left(\xi_{h, \ell}\right) \cong S^{7}$ implies $(h-\ell)^{2} \equiv 1(\bmod 7)$. We will employ the contrapositive result to detect when no such diffeomorphism between $S\left(\xi_{h, \ell}\right)$ and S^{7} can exist. ${ }^{14}$

4 ... But Homeomorphic

4.1 Detecting topological spheres

We will now show that $h+\ell=1$ implies that $S\left(\xi_{h, \ell)}\right.$ is homeomorphic to S^{7}. The proof relies on Morse theory, which (classically) investigates the structure of manifolds via smooth functions having only non-degenerate critical points. A quintessential example ${ }^{15}$ is the norm-squared function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by

$$
f(x)=|x|^{2}=x_{1}^{2}+\cdots+x_{n}^{2} .
$$

This has a unique critical point at the origin, which is non-degenerate.

[^8]The Morse-theoretic result that we will use is called the Reeb sphere theorem:
Theorem. Suppose that M is a closed n-manifold and $f: M \rightarrow \mathbb{R}$ is a smooth function having exactly two critical points, both of which are non-degenerate. ${ }^{16}$ Then M is homeomorphic to S^{n}.

As a particularly simple example of this phenomenon, consider a non-zero linear functional $\lambda: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$. Restricting to the unit sphere, we get a smooth map $\lambda: S^{n} \rightarrow \mathbb{R}$ with exactly two critical points, both of which are non-degenerate (explicitly, these are maximum and minimum of λ, the points in $(\operatorname{ker} \lambda)^{\perp} \cap S^{n}$). While S^{n} is obviously diffeomorphic to itself, this theorem can only guarantee a homeomorphism, as we will see when we use it to detect exotic spheres.

4.2 Defining a useful function

To apply this theorem to $S\left(\xi_{h, \ell}\right)$, we will first recall the construction of $\xi_{h, \ell}$. This vector bundle is defined by the clutching function $\varphi_{h, \ell}: S^{3} \rightarrow \mathrm{SO}(4)$ given by $\varphi_{h, \ell}(u): v \mapsto u^{h} v u^{\ell}$. This means that its total space is defined as a gluing

$$
E\left(\xi_{h, \ell}\right)=\left(\mathbb{R}_{+}^{4} \times \mathbb{R}_{4}\right) \cup\left(\mathbb{R}_{-}^{4} \times \mathbb{R}^{4}\right)
$$

where the gluing map associates $(u, v) \in \mathbb{R}_{+}^{4} \backslash 0 \times \mathbb{R}^{4}$ and $\left(u^{\prime}, v^{\prime}\right) \in \mathbb{R}_{-}^{4} \backslash 0 \times \mathbb{R}^{4}$ by

$$
\left(u^{\prime}, v^{\prime}\right)=\left(\frac{u}{|u|^{2}}, \frac{u^{h}}{|u|^{h}} v \frac{u^{\ell}}{|u|^{\ell}}\right)=\left(\frac{u}{|u|^{2}}, u^{h} v u^{-h} \frac{u}{|u|}\right)
$$

In the last equality above, we used the assumption that $h+\ell=1$. Now we have

$$
S\left(\xi_{h, \ell}\right)=\left(\mathbb{R}_{+}^{4} \times S^{3}\right) \cup\left(\mathbb{R}_{-}^{4} \times S^{3}\right)
$$

defined by the restriction of the same gluing map. We henceforth focus on this sphere bundle, so it will be assumed that $v, v^{\prime} \in S^{3}$. Since $v^{\prime} \in S^{3}$ is invertible, we can reparametrize $\mathbb{R}_{-}^{4} \times S^{3}$ by mapping $\left(u^{\prime}, v^{\prime}\right) \mapsto\left(u^{\prime \prime}, v^{\prime}\right)$ with $u^{\prime \prime}=u^{\prime}\left(v^{\prime}\right)^{-1}$. Whenever $u \neq 0$, the point $\left(u^{\prime \prime}, v^{\prime}\right)$ corresponding to (u, v) is described by

$$
u^{\prime \prime}=u^{\prime}\left(v^{\prime}\right)^{-1}=\frac{u}{|u|^{2}} \frac{u^{-1}}{|u|^{-1}} u^{h} v^{-1} u^{-h}=\frac{u^{h} v^{-1} u^{-h}}{|u|}
$$

In particular, whenever $u \neq 0$, we have $\left|u^{\prime \prime}\right|=|u|^{-1}$ and

$$
\operatorname{Re}\left(u^{\prime \prime}\right)=\frac{\operatorname{Re}\left(v^{-1}\right)}{|u|}=\frac{\operatorname{Re}(\bar{v})}{|u|}=\frac{\operatorname{Re}(v)}{|u|}
$$

[^9]because $|v|=1$ and the real part of a quaternion is fixed under conjugation. ${ }^{17}$
We define a smooth function $f: S\left(\xi_{h, \ell}\right) \rightarrow \mathbb{R}$ by
$$
f(u, v)=\frac{\operatorname{Re}(v)}{\sqrt{1+|u|^{2}}} \quad \text { and } \quad f\left(u^{\prime \prime}, v^{\prime}\right)=\frac{\operatorname{Re}\left(u^{\prime \prime}\right)}{\sqrt{1+\left|u^{\prime \prime}\right|^{2}}}
$$

Using the above computations, it is straightforward to check that these formulas agree on the intersection of their domains. We will show that f has exactly two critical points, both of which are non-degenerate.

4.3 Calculating critical points

To find the critical points of f, first let $u^{\prime \prime}=a+b i+c j+d k$ and notice that

$$
f\left(u^{\prime \prime}, v^{\prime}\right)=\frac{a}{\sqrt{1+a^{2}+b^{2}+c^{2}+d^{2}}}=\frac{a}{\sqrt{e+a^{2}}}
$$

where $e \geq 1$ is constant as a function of a. A straightfoward computation shows that the partial derivative with respect to a is always positive. Hence, there are no critical points on $\mathbb{R}_{-}^{4} \times S^{3}$ and it remains to check points $(u, v) \in \mathbb{R}_{+}^{4} \times S^{3}$ such that $u=0$. For this calculation, we will use the following lemma:

Lemma. Let M and N be smooth manifolds equipped with smooth functions $g_{1}: M \rightarrow \mathbb{R}$ and $g_{2}: N \rightarrow \mathbb{R}$. If $x \in M$ is a critical point of g_{1} with $g_{1}(x) \neq 0$, then a point $y \in N$ is a critical point of g_{2} if and only if (x, y) is a critical point of the multiplied function $g_{1} g_{2}: M \times N \rightarrow \mathbb{R}$. When this is the case, the critical point (x, y) is non-degenerate if and only if both x and y are non-degenerate.

Proof. Since we are only checking local conditions, we may assume that $M=\mathbb{R}^{m}$ and $N=\mathbb{R}^{n}$. We assumed that $\nabla g_{1}(x)=0$, so the Leibniz rule gives

$$
\nabla\left(g_{1} g_{2}\right)(x, y)=g_{1}(x) \nabla g_{2}(y)+g_{2}(y) \nabla g_{1}(x)=g_{1}(x) \nabla g_{2}(y)
$$

But we also assumed that $g_{1}(x) \neq 0$, so we can see that

$$
\nabla\left(g_{1} g_{2}\right)(x, y)=0 \Longleftrightarrow \nabla g_{2}(y)=0
$$

[^10]Writing $\mathbf{H}_{p}(g)$ for the Hessian of a function g at a point p, we also have

$$
\mathbf{H}_{(x, y)}\left(g_{1} g_{2}\right)=\left[\begin{array}{cc}
\mathbf{H}_{x}\left(g_{1}\right) & \nabla g_{1}(x) \nabla g_{2}(y)^{T} \\
\nabla g_{2}(y) \nabla g_{1}(x)^{T} & \mathbf{H}_{y}\left(g_{2}\right)
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{H}_{x}\left(g_{1}\right) & 0 \\
0 & \mathbf{H}_{y}\left(g_{2}\right)
\end{array}\right]
$$

This matrix is invertible if and only if $\mathbf{H}_{x}\left(g_{1}\right)$ and $\mathbf{H}_{y}\left(g_{2}\right)$ are invertible. ${ }^{18}$
A brief calculation shows that we have a diffeomorphism $(-1, \infty) \rightarrow(0, \infty)$ given by $1 / \sqrt{1+t}$. Composing this with the first example of $\S 4.1$, the function

$$
g_{1}(u)=\frac{1}{\sqrt{1+|u|^{2}}}
$$

has a non-degenerate critical point at $u=0$. The second example of $\S 4.1$ shows that $\operatorname{Re}: S^{3} \rightarrow \mathbb{R}$ has critical points at $v= \pm 1$, which are both non-degenerate. By the lemma, we see that $f(u, v)=g_{1}(u) \operatorname{Re}(v)$ has exactly two critical points, both of which are non-degenerate. Using the theorem from $\S 4.1$, we can finally see that $S\left(\xi_{h, \ell}\right)$ is homeomorphic to S^{7}.

Combining the results of $\S 3$ and $\S 4$, we have now shown the following:

As such, the smooth manifold $S\left(\xi_{h, 1-h}\right)$ is homeomorphic to S^{7} for any $h \in \mathbb{Z}$, but it can only be diffeomorphic to S^{7} when $(2 h-1)^{2} \equiv 1(\bmod 7)$. Therefore, we get an exotic smooth structure on S^{7} from any integer $h \not \equiv 0,1(\bmod 7) .{ }^{19}$

5 Appendices

5.1 Rotations in \mathbb{R}^{4} via quaternions

In this appendix, we will prove a fact mentioned in $\S 2.4$, namely that the map

$$
\Phi: S^{3} \times S^{3} \rightarrow \mathrm{SO}(4) \quad \text { given by } \quad \Phi(x, y): v \mapsto x v y
$$

[^11]is a double cover. It is clearly equivalent to prove that
$$
\Phi^{\prime}: S^{3} \times S^{3} \rightarrow \mathrm{SO}(4) \quad \text { given by } \quad \Phi^{\prime}(x, y): v \mapsto x v y^{-1}
$$
is a double cover, since inversion in S^{3} is a diffeomorphism. To prove this fact, note that Φ^{\prime} is a smooth homomorphism between compact, connected Lie groups of the same dimension. To show that Φ^{\prime} is a double cover, it therefore suffices to show that $\operatorname{ker} \Phi^{\prime}$ contains exactly two elements.

Let us first calculate the center $Z(\mathbb{H})$. If $u=a+b i+c j+d k$, then we have

$$
\begin{aligned}
i u i^{-1} & =a+b i-c j-d k, \\
j u j^{-1} & =a-b i+c j-d k, \\
k u k^{-1} & =a-b i-c j+d k .
\end{aligned}
$$

So if $u \in Z(\mathbb{H})$, then we must have $b=c=d=0$. This proves that $Z(\mathbb{H}) \subseteq \mathbb{R}$. The reverse inclusion is apparent, so we in fact have $Z(\mathbb{H})=\mathbb{R}$.

Now suppose that $\Phi^{\prime}(x, y)=\operatorname{Id}$, i.e. $x, y \in S^{3}$ and $x v y^{-1}=v$ for all $v \in \mathbb{H}$. This implies that $x y^{-1}=1$ and thus $x=y$, so we are analyzing the map

$$
\Phi^{\prime}(x, y): v \mapsto x v x^{-1}
$$

This is the identity if and only if $x \in Z(\mathbb{H})=\mathbb{R}$. Since x is in the unit sphere, we must have $x= \pm 1$. This proves that $\operatorname{ker} \Phi^{\prime}=\{(1,1),(-1,-1)\}$ and hence that Φ^{\prime} is a double cover.

We have concretely described rotations in \mathbb{R}^{4} via quaternionic multiplication. This also restricts to a description of rotations in \mathbb{R}^{3}. We view $\mathrm{SO}(3) \subseteq \mathrm{SO}(4)$ as the set of rotations of that restrict to the identity on $\mathbb{R} \subseteq \mathbb{H}$, since these are described by rotations of the 3-dimensional space of imaginary quaternions:

$$
\mathbb{R}^{\perp}=\{b i+c j+d k: b, c, d \in \mathbb{R}\}
$$

Similarly to the above analysis of $\mathrm{SO}(4)$, we can see that

$$
\Phi^{\prime}(x, y) \in \mathrm{SO}(3) \Longleftrightarrow \Phi^{\prime}(x, y) \text { fixes } 1 \Longleftrightarrow x=y
$$

Thus Φ^{\prime} restricts to a double cover of $\mathrm{SO}(3)$ by the diagonal $\Delta \subseteq S^{3} \times S^{3}$:

$$
\left.\Phi^{\prime}\right|_{\Delta}: S^{3} \rightarrow \mathrm{SO}(3) \quad \text { given by }\left.\quad \Phi^{\prime}\right|_{\Delta}(x): v \mapsto x v x^{-1}
$$

To conclude this section, we will also show that the $n^{\text {th }}$ power map $S^{3} \rightarrow S^{3}$ has degree n, since this fact was implicitly invoked in $\S 2.4 .{ }^{20}$ For this purpose, we consider the following two maps:

[^12]\[

$$
\begin{gathered}
\Delta \\
S^{3} \longrightarrow(x, \ldots, x) \\
\left(S^{3}\right)^{n} \xrightarrow{\square} \xrightarrow{\square} \prod_{i=1}^{n} x_{i}
\end{gathered}
$$
\]

Then $\Pi \circ \Delta(x)=x^{n}$ is our $n^{\text {th }}$ power map. Applying the homology functor H_{3} and the Künneth theorem, we get the following diagram of homomorphisms:

Let $\pi_{i}:\left(S^{3}\right)^{n} \rightarrow S^{3}$ denote the projection to $i^{\text {th }}$ factor and let $\iota_{i}: S^{3} \rightarrow\left(S^{3}\right)^{n}$ denote inclusion of the $i^{\text {th }}$ factor (where the other factors map constantly to 1). The isomorphism $\left.H_{3}\left(\left(S^{3}\right)\right)^{n}\right) \cong \mathbb{Z}^{n}$ can be described either as a direct product via the projections $\left(\pi_{i}\right)_{*}$ or as a direct sum via the inclusions $\left(\iota_{i}\right)_{*}$. Notice that

$$
\pi_{i} \circ \Delta=\operatorname{Id}_{S^{3}} \text { and } \Pi \circ \iota_{i}=\operatorname{Id}_{S^{3}}
$$

From this, we can see that our induced maps on H_{3} take the following form:

Finally, we can see that $\Pi_{*} \circ \Delta_{*}(a)=n a$ and therefore that $\Pi \circ \Delta$ has degree n.

5.2 Why did we assume $h+\ell=1$?

We know that $S\left(\xi_{h, \ell}\right)$ is homeomorphic to S^{7} whenever $h+\ell=1$, but we still may wonder why Milnor knew to investigate these particular values of h and ℓ. To explain his process, we will show that $S\left(\xi_{h, \ell}\right)$ is homotopy equivalent to S^{7} if and only if $h+\ell= \pm 1 .{ }^{21}$ Since $S\left(\xi_{h, \ell}\right)$ and $S\left(\xi_{-\ell,-h}\right)$ are diffeomorphic with opposite orientation, this reasonably justifies focusing on the case of $h+\ell=1$.

Recall that $S\left(\xi_{h, \ell}\right)$ is an S^{3}-bundle over S^{4}. From the corresponding long exact sequence of homotopy groups, we can see that $\pi_{i} S\left(\xi_{h, \ell}\right)$ vanishes for $i \leq 2$. Thus $S\left(\xi_{h, \ell}\right)$ is a homotopy 7 -sphere if and only if we have

$$
H_{i} S\left(\xi_{h, \ell}\right) \cong\left\{\begin{array}{ll}
0, & i \neq 7 \\
\mathbb{Z}, & i=7
\end{array} \text { for all } i \geq 3\right.
$$

[^13]By restricting the gluing used to define $E\left(\xi_{h, \ell}\right)$, we can write

$$
S\left(\xi_{h, \ell}\right)=\left(D_{+}^{4} \times S^{3}\right) \cup\left(D_{-}^{4} \times S^{3}\right),
$$

where the gluing is given by the following pushout diagram:

Applying the homology functor H_{3} to this diagram, we ignore the contractible factors $D_{ \pm}^{3}$ and just look at the degrees in each component of the maps

$$
(u, v) \mapsto v \quad \text { and } \quad(u, v) \mapsto u^{h} v u^{\ell}
$$

We can see that the map $(u, v) \mapsto u^{h} v u^{\ell}$ has degree $h+\ell$ as a function of u and degree 1 as a function of v (letting the other vector equal $1 \in S^{3}$ in each case). So after applying H_{3}, we have the following diagram:

This is no longer a pushout diagram; instead, we have a Mayer-Vietoris sequence, which includes the following portion:

$$
0 \longrightarrow H_{4} S\left(\xi_{h, \ell}\right) \longrightarrow \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\left[\begin{array}{cc}
0 & 1 \\
h+\ell & 1
\end{array}\right]} \mathbb{Z} \oplus \mathbb{Z} \longrightarrow H_{3} S\left(\xi_{h, \ell}\right) \longrightarrow 0
$$

By exactness, we can see that $H_{3} S\left(\xi_{h, \ell)}\right.$ and $H_{4} S\left(\xi_{h, \ell}\right)$ both vanish if and only if the middle map is an isomorphism. This holds precisely when the determinant is invertible in \mathbb{Z}, i.e. when $h+\ell= \pm 1$. Regardless of h and ℓ, given any $i \geq 5$, we can use another portion of the same Mayer-Vietoris sequence:

$$
0 \longrightarrow H_{i} S\left(\xi_{h, \ell}\right) \longrightarrow H_{i-1}\left(S^{3} \times S^{3}\right) \longrightarrow 0
$$

For any $i \geq 5$, by exactness and the Künneth theorem, we then have:

$$
H_{i} S\left(\xi_{h, \ell}\right) \cong H_{i-1}\left(S^{3} \times S^{3}\right) \cong \begin{cases}0, & i \neq 7 \\ \mathbb{Z}, & i=7\end{cases}
$$

Therefore $S\left(\xi_{h, \ell}\right)$ is homotopy equivalent to S^{7} if and only if $h+\ell= \pm 1$.

5.3 A fun fact about $\left.\gamma_{2}^{\mathbb{H}}\right|_{\mathbb{C}}$

We conclude with an unrelated fun fact about the complex vector bundle $\left.\gamma_{2}^{\mathbb{H}}\right|_{\mathbb{C}}$. Given any real vector bundle η, the complexification $\xi=\eta \otimes \mathbb{C}$ satisfies $\bar{\xi} \cong \xi$. This implies that $2 c_{i}(\xi)=0$ whenever i is odd, justifying our ignorance of odd Chern classes in the definition of Pontryagin classes. But the lovely text [FF] erroneously claims the converse, namely that an isomorphism $\bar{\xi} \cong \xi$ implies that ξ is the complexification of some real vector bundle η. This greatly confused me when I was first learning about characteristic classes, but I eventually learned from Alexander Givental and Tong Zhou that $\left.\gamma_{2}^{\mathbb{H}}\right|_{\mathbb{C}}$ is a counterexample.

Suppose $\left.\gamma_{2}^{\mathbb{H}}\right|_{\mathbb{C}} \cong \eta \otimes \mathbb{C}$ for some \mathbb{R}^{2}-bundle η over $\mathbb{H} \mathbb{P}^{1}$. We have $w_{1}(\eta)=0$ because $H^{1}\left(\mathbb{H} \mathbb{P}^{1} ; \mathbb{Z} / 2\right)$ is trivial, so η must be orientable. This yields an integral Euler class $e(\eta)=0$, since $H^{2}\left(\mathbb{H} \mathbb{P}^{1} ; \mathbb{Z}\right)$ is also trivial. But we also know that

$$
\begin{aligned}
e(\eta)=0 & \Longleftrightarrow \eta \text { has a non-vanishing section } \\
& \Longleftrightarrow \gamma_{2}^{\mathbb{H}} \mid \mathbb{C} \cong \eta \otimes \mathbb{C} \text { has a non-vanishing section. }
\end{aligned}
$$

This implies that $\gamma_{2}^{\mathbb{H}}$ is a quaternionic line bundle with a non-vanishing section, so it is trivial. But then $\left.\gamma_{2}^{\mathbb{H}}\right|_{\mathbb{C}}$ is trivial, which contradicts $\S 1.2$, where we showed

$$
c_{2}\left(\left.\gamma_{2}^{\mathbb{H}}\right|_{\mathbb{C}}\right) \neq 0
$$

Therefore, no such η can exist. It now remains to show that $\left.\gamma_{2}^{\mathbb{H}}\right|_{\mathbb{C}}$ is isomorphic to its conjugate, or equivalently, that there is a conjugate-linear automorphism of the \mathbb{C}^{2}-bundle $\left.\gamma_{2}^{\mathbb{H}}\right|_{\mathbb{C}}$. Since $\mathbb{H P}^{1}$ consists of right-lines and our total space is

$$
E\left(\gamma_{2}^{\mathbb{H}}\right)=\left\{(v, \ell) \in \mathbb{H}^{2} \times \mathbb{H} \mathbb{P}^{1}: v \in \ell\right\}
$$

it follows that the map $(v, \ell) \mapsto(v j, \ell)$ is an automorphism of $\left.\gamma_{2}^{\mathbb{H}}\right|_{\mathbb{R}}$. To see this as a conjugate-linear automorphism of $\left.\gamma_{2}^{\underline{H 1} \mid}\right|_{\mathbb{C}}$, recall that the complex structure on $\left.\gamma_{2}^{\mathbb{H}}\right|_{\mathbb{C}}$ comes from right-multiplication by i. Now since i and j anti-commute, right-multiplication by j is conjugate-linear (over \mathbb{C}) on each fiber $\ell \in \mathbb{H} \mathbb{P}^{1}$.

References

[A] M. Atiyah. K-theory. Lecture notes by D. W. Anderson.
W. A. Benjamin, Inc., New York-Amsterdam, 1967.
[EK] J. Eells Jr., N. Kuiper. An invariant for certain smooth manifolds. Ann. Mat. Pura Appl. (4) 60 (1962), 93-110.
[FF] A. Fomenko, D. Fuchs. Homotopical Topology. Second edition. Graduate Texts in Mathematics, no. 273, Springer, 2016.
[M1] J. Milnor. On manifolds homeomorphic to the 7 -sphere. Ann. of Math. (2) 64 (1956), 399-405.
[M2] J. Milnor. Morse Theory. From lecture notes by M. Spivak and R. Wells. Ann. of Math. Stud., No. 51 Princeton Univ. Press, Princeton, NJ, 1963.
[M3] J. Milnor. Differential Topology. Lectures on modern mathematics. Vol. II, 165-83. Edited by T. L. Saaty. John Wiley \& Sons, Inc., 1964. [link]
[M4] J. Milnor, J. Stasheff. Characteristic classes. Ann. of Math. Stud., no. 76, Princeton Univ. Press, Princeton, NJ, 1974.
[M5] J. Milnor. Classification of $(n-1)$-connected $2 n$-dimensional manifolds and the discovery of exotic spheres. Surveys on surgery theory, Vol. 1, 25-30, Ann. of Math. Stud., no. 145, Princeton Univ. Press, Princeton, NJ, 2000.

[^0]: ${ }^{1}$ This is purely an operation on sets; we are not using the disjoint union topology.
 ${ }^{2}$ This attaching map has Hopf invariant 1 , yielding examples of such a map for $n=1,2,4$. There is a similar construction for $n=8$ that uses the octonions \mathbb{O} and $\mathbb{O P}^{2}=D^{16} \cup_{f} S^{8}$, but the definition of $\mathbb{O P}^{2}$ is complicated by the fact that \mathbb{O} is not associative and so lines are not well-defined in \mathbb{O}^{3}. Indeed, while $\mathbb{O P}^{2}$ exists, there is no reasonable space that we might call $\mathbb{O P}^{k}$ when $k>2[\mathrm{FF}]$.

[^1]: ${ }^{3}$ We say "sphere bundle" to mean a bundle with spherical fibers and "unit sphere bundle" to mean a sphere bundle arising as the space of unit vectors inside of a normed vector bundle.
 ${ }^{4}$ We can also interpret this as a principal bundle, where the right action $S^{n-1} \subset S^{k n-1}$ is given by multiplying unit vectors in $S^{k n-1} \subseteq \mathbb{F}^{k}$ by unit scalars in $S^{n-1} \subseteq \mathbb{F}$ on the right.

[^2]: ${ }^{5}$ In fact, this function is a bijection [A].

[^3]: ${ }^{6}$ Given a topological group G and a compact Hausdorff space X, we let $\operatorname{Bun}_{G}(X)$ denote the set of isomorphism classes of principle G-bundles over X. Then the clutching construction yields a bijection $[X, G]=\operatorname{Bun}_{G}(\Sigma X)$, where each side is functorial and the correspondence between them is a natural transformation. The set $\operatorname{Bun}_{G}(\Sigma X)$ is also classified by $[\Sigma X, B G]$. The two descriptions are related by the weak equivalence $G \simeq \Omega B G$ and the adjunction $\Sigma \dashv \Omega$:

[^4]: ${ }^{7}$ It is possible to define a monoid structure by extending the connected sum $S^{k} \# S^{k}=S^{k}$ to the total spaces of the vector bundles. In terms of this structure, the clutching construction yields a group isomorphism. However, we do not want to go through the tedium of defining this structure and verifying well-definedness, before we compare it to the clutching construction.
 ${ }^{8}$ We state this in terms of a characteristic class of unoriented bundles, because we will only need the first Pontryagin class p_{1}. However, our clutching functions also define an orientation

[^5]: ${ }^{9}$ Because φ_{i} takes the basepoint of S^{k-1} to $\operatorname{Id} \in \mathrm{SO}(n)$, the clutching construction yields a canonical identification of \mathbb{R}^{n} with the fiber of ξ_{i} over the basepoint of S^{k} (for $i=1$ or 2). It is not hard to check local trivializability of $\xi_{1} \vee \xi_{2}$, by gluing together local trivializations of the bundles ξ_{1} and ξ_{2} near the basepoint of S^{k}.
 ${ }^{10}$ In short, this follows from the fact that the reduced cone functor and wedge sum commute, so the two gluings used to define $\xi_{1} \vee \xi_{2}$ are essentially the same in either order.

[^6]: ${ }^{11}$ In fact, this is an isomorphism, because Φ is a double cover. See $\S 5.1$ for further details.
 12 A similar calculation can be used to determine the Euler class $e\left(\xi_{h, \ell}\right)= \pm(h+\ell)$.

[^7]: ${ }^{13}$ This result is called the Hirzebruch signature formula, as it was generalized by Hirzebruch to an explicit formula in any dimension $4 k$ (where $k=2$ in our case).

[^8]: ${ }^{14}$ At this point, the reader may wonder why we had to go through an analysis of the tangent bundle to an auxiliary 8-manifold X, to tell apart the smooth structures on $S\left(\xi_{h, \ell)}\right.$ and S^{7}. Why not look directly at the tangent bundles of these 7 -manifolds? It turns out that every \mathbb{R}^{7}-bundle over S^{7} is trivial (see this MathOverflow answer from Ian Agol), so characteristic classes on the tangent bundle are insufficient to tell apart smooth structures on S^{7}. However, it is possible to tell apart certain closed 7 -manifolds by comparing properties of 8 -manifolds that they bound. See [M1] for details.
 ${ }^{15}$ Indeed, if we allow each summand x_{i}^{2} to have a sign of ± 1, then the Morse lemma states that every non-degenerate critical point has this form in some chart. For a proof, see [M2].

[^9]: ${ }^{16}$ The non-degeneracy condition is not actually necessary, but it makes the proof simpler. For proofs of both versions of the theorem, see [M3].

[^10]: ${ }^{17}$ To highlight the relevance of conjugation, we compare two clutching functions: our $\varphi_{h, \ell}$ (with $h+\ell=1$) and the function $\varphi_{1,0}$ that was used to define $\gamma_{2}^{\mathbb{H}}$. These two are related by

 $$
 \varphi_{h, \ell}(u) v=u^{h} v u^{1-h}=u^{h-1}(u v) u^{1-h}=u^{h-1}\left(\varphi_{1,0}(u) v\right) u^{1-h}
 $$

 This suggests a heuristic view of $S\left(\xi_{h, \ell}\right)$ (with $h+\ell=1$) as a variant of the Hopf bundle

 $$
 S^{3} \hookrightarrow S^{7} \rightarrow S^{4}
 $$

 that has been "twisted by conjugation." This highlights the importance of non-commutativity in this construction and provides an a posteriori justification of our choice to set $h+\ell=1$ when looking for exotic 7 -spheres. For the a priori reasoning that led Milnor to set $h+\ell=1$, see the calculation carried out in $\S 5.2$.

[^11]: ${ }^{18}$ You may notice that the computation of the Hessian did not depend on y being a critical point of g_{2}. But the Hessian is only defined in a coordinate-invariant way at critical points.
 ${ }^{19}$ Using only the techniques developed here, we have no way of telling apart exotic spheres. Up to orientation-preserving diffeomorphism, it turns out that there are 28 oriented smooth structures on S^{7}, but only 16 can be produced as a bundle in the fashion outlined here [EK].

[^12]: ${ }^{20}$ One may be tempted to calculate the degree as a signed count of points in a regular fiber, mimicking the analogous result for $S^{1} \subseteq \mathbb{C}$. This is probably doable, but non-commutativity takes some elegance out of this approach: the $n^{\text {th }}$ power map is not a local diffeomorphism when $n \geq 2$ (for instance, notice that any purely imaginary $u \in S^{3}$ squares to -1). Instead, we use the homological definition of degree to give a fairly succinct argument.

[^13]: ${ }^{21}$ This calculation is much more standard than the use of Morse functions, and was carried out prior to Milnor's realization that he had discovered exotic smooth structures on S^{7} [M5].

