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In this note, I will spell out various details of the proofs in [B]. Remarkably,

the techniques used in that paper are all of the sort that one would encounter in

a first course on point-set topology (e.g. Chapters 2-4 of [M]). I have done my

best to gear my explanations towards a reader who only has this background,

although we will need to black-box one result, which is proved using homology.
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1 Separating Spheres

We first establish some notation and terminology. Let Sn denote the n-sphere,

let D̄n denote the closed n-disk, let Dn denote its interior and ∂Dn = D̄n−Dn.

We will write “map” to mean “continuous function.” Given any map f : X → Y ,

an inverse set under f is any fiber f−1(y) ⊆ X containing more than one point.

We will assume that n > 1, so that Sn−1 is connected (most of the results,

including Theorems 1.1 and 5.1, are still true and much more straightforward

to prove when n = 0 or 1).

Our first result is the only one that we have to state without a full proof:

Theorem 1.1 (Jordan-Brouwer Theorem). For any injective map f : D̄k → Sn,

the complement Sn−f(D̄k) is connected. For any injective map g : Sn−1 → Sn,

the complement Sn−g(Sn−1) has two components, each with boundary g(Sn−1).
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Proof. Homology theory is required to prove the connectedness of Sn − f(D̄k)

and the fact that Sn − g(Sn−1) has two components (Proposition 2B.1 in [H]).

As such, we will take this result for granted and move on to recounting the proof

of the final claim, as it is laid out in [S].

Let B and C be the two components of Sn−g(Sn−1). Connected components

of any topological space are closed, so B and C are both closed in Sn−g(Sn−1).

But they are each others’ complements, so they are both open in Sn− g(Sn−1).

Since g(Sn−1) is compact and thus closed in Sn, it follows that Sn − g(Sn−1)

is open in Sn. Thus B and C are open in Sn. We will show that ∂B = g(Sn−1)

(an analogous proof applies to C). Note that we have a disjoint union

Sn = B ⊔ C ⊔ g(Sn−1).

Since B is open, we have ∂B = B̄ − B, so we need to prove B̄ = B ⊔ g(Sn−1).

But C is also open, so B ⊔ g(Sn−1) is closed and thus B ⊆ B̄ ⊆ B ⊔ g(Sn−1).

For the sake of contradiction, suppose that there exists some x ∈ g(Sn−1)− B̄.

Since x /∈ B̄, there is an open set U ⊆ Sn with x ∈ U and U ∩B = ∅.
Let x̃ = g−1(x) and consider the open neighborhood g−1(U) ∋ x̃ in Sn−1.

Letting V ∋ x̃ be a standard open disk,1 which is small enough that V ⊆ g−1(U),

we can see that the complement E = Sn−1−V is homeomorphic to D̄n−1. Thus

Sn − g(E) = B ⊔ C ⊔ g(V )

is connected, by the first portion of this theorem. The open set W = U − g(E)

must satisfy W ⊆ C ⊔ g(V ), because W ⊆ Sn − g(E) and W ∩B ⊆ U ∩B = ∅.
We also get g(V ) ⊆ W, because g(V ) ⊆ U by assumption and g(V ) ∩ g(E) = ∅
by the injectivity of g. Thus C ⊔ g(V ) = C ∪W and so we can write

Sn − g(E) = B ⊔ C ⊔ g(V ) = B ⊔ (C ∪W ).

Since B, C andW are open, this contradicts the connectedness of Sn−g(E).

Corollary 1.2. If f : D̄n → Dn is a continuous injection, then f(Dn) is open.

Proof. Here, we will essentially just replicate the proof of Theorem 2B.3 in [H].

Fix some point x ∈ Sn. Since Sn − x is open in Sn and homeomorphic to Dn,

it is equivalent to consider a continuous injection f : D̄n → Sn with x /∈ f(D̄n)

and show that f(Dn) is open in Sn. Note that we have a disjoint union

Sn = f(Dn) ⊔ f(∂Dn) ⊔
(
Sn − f(D̄n)

)
.

1By this, we mean a metric ball in Sn−1 (of radius less than 2), using the standard metric

inherited by viewing Sn−1 ⊆ Rn as the unit sphere. These balls form a base for the metric

topology on Sn−1, which is how we can guarantee the existence of V.
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Since Sn−1 is homeomorphic to ∂Dn, Theorem 1.1 implies that

Sn − f(∂Dn) = f(Dn) ⊔
(
Sn − f(D̄n)

)
has exactly two connected components. As remarked in the proof of the theorem,

each of these components is open in Sn. But Theorem 1.1 also implies that

Sn − f(D̄n) is connected. Since f(Dn) is clearly also connected, these sets are

the aforementioned components of Sn − f(∂Dn), so they are open in Sn.

In the case where n = 2, the Jordan-Schoenflies theorem states not only that

the complement S2 − g(S1) has two components, but that the closure of each

component is homeomorphic to D̄2. When n > 2, the analogous assertion may

fail to hold, as demonstrated by pathologies like the Alexander horned sphere.

But this generalization to higher dimensions does hold when g is “nice enough”

in a sense that we will make precise later on (this is what we will ultimately

prove in this note). As a first step, we can prove another result due to Brouwer,

called invariance of domain (one form of which is the corollary we just proved).

This is a theorem concerning manifolds, so we a recall a weak definition here:

Definition 1.3. A topological space X is an n-manifold if every point x ∈ X

admits an open neighborhood U ∋ x that is homeomorphic to Dn.2

If the reader is encountering manifolds for the first time in this definition,

they may find the following exercise instructive: prove that any open subset of

an n-manifold is an n-manifold (this will be used without comment later on).

Proposition 1.4 (Invariance of Domain). Suppose X and Y are n-manifolds

and f : X → Y is a continuous injection. Then f(X) ⊆ Y is open.

Proof. To prove that f(X) ⊆ Y is open, we consider a point x ∈ X and show

that f(X) contains a neighborhood of f(x). Since X and Y are n-manifolds,

there exist open sets U ∋ x and V ∋ f(x) and homeomorphisms h : Dn → U

and k : Dn → V. Let x̃ = h−1(x) and notice that (f ◦ h)−1(V ) ⊆ Dn is an open

set containing x̃. Therefore, there is a small embedded disk g : D̄n → Dn with

x̃ ∈ g(Dn) and g(D̄n) ⊆ (f ◦ h)−1(V ).

These maps are illustrated in the following diagram:

2It might be more appropriate to call such spaces locally Euclidean and reserve the title of

manifold for those that are Hausdorff and second-countable, but the result of Proposition 1.4

does not actually require either of these assumptions.
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Dn (f ◦ h)−1(V ) D̄n Dn

U X Y V

h

g

k

f

Since (f ◦h◦g)(D̄n) ⊆ V and all of these maps are injective, we get a continuous

injection k−1 ◦ f ◦ h ◦ g : D̄n → Dn. It follows from Corollary 1.2 that the set

(k−1 ◦ f ◦ h ◦ g)(Dn) ⊆ Dn

is open and therefore that (f ◦ h ◦ g)(Dn) is open in V . Since V is open in Y

and x̃ ∈ g(Dn), it follows that (f ◦h◦ g)(Dn) ⊆ f(X) is open in Y and contains

the point (f ◦ h)(x̃) = f(x), as desired.

The quintessential application of invariance of domain is in showing that the

dimension of a manifold is well-defined, i.e. if a non-empty topological space X

is an n-manifold and an m-manifold, then n = m. But we will only need to use

it to directly identify open sets in various proofs.

2 Cellular Subsets

The key technical notion used in [B] is that of a cellular subset, for which it will

be useful to establish two equivalent definitions:

Definition 2.1. Let X be a metrizable n-manifold and consider a subset C ⊆ X.

The following two conditions are equivalent:

(a) There is a sequence of embeddings fi : D̄
n → X with fi+1(D̄

n) ⊆ fi(D
n)

for all i ∈ N, which satisfy

C =
⋂
i∈N

fi(D̄
n).

(b) For any open set U ⊆ X with C ⊆ U, there is an injective map g : D̄n → U,

which satifies C ⊆ g(Dn).

If these equivalent conditions hold, we will say that C is cellular in X.

Proof. We need to prove that each condition implies the other.

(a) =⇒ (b) : Suppose the embeddings fi satisfy (a) and let U ⊆ X be an open

set with C ⊆ U. For any i ∈ N, we have C ⊆ fi+1(D̄
n) ⊆ fi(D

n).
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Therefore, we just need to find some i ∈ N such that fi(D̄
n) ⊆ U.

If no such i ∈ N existed, we would have a descending sequence

f1(D̄
n)− U ⊇ f2(D̄

n)− U ⊇ f3(D̄
n)− U ⊇ . . .

of non-empty, compact subsets. But then the intersection⋂
i∈N

(
fi(D̄

n)− U
)
= C − U

would be non-empty, contradicting the assumption that C ⊆ U.

(b) =⇒ (a) : If C ̸= C̄, we can choose some x ∈ C̄ − C and set U = X − x.

Then (b) yields an injective map g : D̄n → U with C ⊆ g(Dn).

Since D̄n is compact and X is Hausdorff, the set g(D̄n) is closed

in X and thus x ∈ C̄ ⊆ g(D̄n), which contradicts g(D̄n) ⊆ U.

Thus C = C̄ is closed in X.

Now let d be a metrization of X (i.e. a metric inducing the given

topology on X). For each i ∈ N, the set

Vi =
{
x ∈ X : d(x,C) < 1

i

}
=

⋃
c∈C

{
x ∈ X : d(x, c) < 1

i

}
is clearly open and contains C. These sets also clearly satisfy⋂

i∈N
Vi = C̄ = C.

We inductively define maps fi : D̄
n → X and open sets Ui ⊇ C,

as follows. Let U0 = X. For any i ≥ 1, we define fi : D̄
n → Ui−1

to be the injective map given by (b) and let Ui = fi(D
n) ∩ Vi.

For this method to work, each Ui must be open and contain C.

This is obvious for U0. Whenever i ≥ 1, we can see that fi(D
n)

is open by invariance of domain and contains C by the statement

of (b) that was used to define fi. But we already remarked that

the same is true of each Vi, so it is true of the intersections Ui.

Notice that fi+1(D̄
n) ⊆ Ui ⊆ fi(D

n) by definition and that

C ⊆
⋂
i∈N

fi+1(D̄
n) ⊆

⋂
i∈N

Ui ⊆
⋂
i∈N

Vi = C.

Because each fi : D̄
n → X is an injective map from a compact

space to a Hausdorff space, it is necessarily an embedding.

From the second definition of a cellular subset, we can see that this notion

is hereditary with respect to the ambient manifold, in the following sense:
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Corollary 2.2. Let X be any metrizable n-manifold and let V ⊆ X be open.

Then V is a metrizable n-manifold and a subset C ⊆ V is cellular in V if and

only if it is cellular in X.

We leave the proof of this corollary as an exercise for the reader and move

on to demonstrate the existence of various self-homeomorphisms of D̄n and Sn,

which do not directly involve cellularity, but will be of use later. Let Map∂(D̄
n)

denote the set of maps f : D̄n → D̄n that fix ∂Dn pointwise and let

Homeo∂(D̄
n) =

{
f ∈ Map∂(D̄

n) : f is a homemorphism
}
.

Lemma 2.3. For any p ∈ Dn, there exists ψ ∈ Homeo∂(D̄
n) with ψ(0) = p.3

Proof. We first define a map Ψ : Sn−1 × [0, 1] → D̄n by Ψ(v, t) = p+ t(v − p).

This satisfies Ψ−1(p) = Sn−1 × 0. To prove that this is the only inverse set,

suppose that t1, t2 > 0 and Ψ(v1, t1) = Ψ(v2, t2). Then t1v1 − t2v2 = (t1 − t2)p,

so if t1 = t2, then we may conclude that v1 = v2. For the sake of contradiction,

suppose that t1 ̸= t2. Then the reverse triangle inequality implies that

∥p∥ =
∥t1v1 − t2v2∥

|t1 − t2|
≥

∣∣t1∥v1∥ − t2∥v2∥
∣∣

|t1 − t2|
=

|t1 − t2|
|t1 − t2|

= 1.

But this contradicts our assumption that p ∈ Dn. Hence, the map Ψ is injective

on Sn−1 × (0, 1]. Now consider an arbitrary point w ∈ D̄n − p and define

f(t) =
∥∥ 1

t (w − p) + p
∥∥

This defines a map f : (0, 1] → [0,∞) with f(1) = ∥w∥ ≤ 1. We also have

t ≤ ∥w − p∥
1 + ∥p∥

=⇒ f(t) =
∥∥ 1

t (w − p) + p
∥∥

≥ 1
t ∥w − p∥ − ∥p∥

≥ 1 + ∥p∥ − ∥p∥ = 1.

By the intermediate value theorem, there exists some t ∈ (0, 1] with f(t) = 1.

We can then set v = 1
t (w−p)+p ∈ Sn−1 and immediately see that Ψ(v, t) = w.

Hence, the map Ψ is surjective. Define the quotient map q : Sn−1× [0, 1] → D̄n

by q(v, t) = tv. Since q simply collapses Sn−1×0 to a point, the map Ψ descends

along the quotient map q to define a bijective map ψ : D̄n → D̄n with ψ(0) = p.

Since D̄n is compact, this map ψ is a homeomorphism. Given any v ∈ Sn−1,

we clearly have q(v, 1) = v = Ψ(v, 1), so ψ fixes Sn−1 = ∂Dn pointwise.

3Here, we are viewing D̄n ⊆ Rn as the closed unit ball under the usual norm ∥ · ∥ on Rn

and Sn−1 = ∂Dn ⊆ Rn as the unit sphere.
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Lemma 2.4. Suppose U,Q ⊆ Dn are open and Q̄∩∂Dn = ∅ (where Q̄ refers to

the closure in D̄n). Given any p ∈ U ∩Q, there exists some φ ∈ Homeo∂(D̄
n)

that restricts to the identity on a neighborhood of p and satisfies φ(Q̄) ⊆ U.

Proof. Applying Lemma 2.3, we may assume that p = 0. Since the usual norm

ν : Rn → [0, 1] is a continuous map,4 the compact set

Q̄ ⊆ Dn = ν−1[0, 1)

admits some M ∈ (0, 1) such that ν(Q̄) ⊆ [0,M ]. Since U ∈ Dn is an open set

containing 0, there is some small radius m ∈ (0,M) with ν−1[0,m) ⊆ U. Next,

we can define an increasing, piecewise-linear homeomorphism µ : [0, 1] → [0, 1]

by linear interpolation between the points (0, 0),
(
m
2 ,

m
2

)
,
(
M+1

2 ,m
)
and (1, 1).

Letting a = m
m−M−1 and b = m−1

M−1 , we can make this explicit by writing

µ(t) =


t, 0 ≤ 2t ≤ m

−ax+ m
2 (a+ 1), m ≤ 2t ≤M + 1

2bx+ 1− 2b, M + 1 ≤ 2t ≤ 2

This is defined so that µ(t) = t whenever t < m
2 and µ(t) < m whenever t ≤M,

becauseM < M+1
2 and µ

(
M+1

2 ) = m. As in the previous proof, we also consider

the quotient map q : Sn−1 × [0, 1] → D̄n given by q(v, t) = tv, which collapses

Sn−1 × 0 to a point. Now consider the following diagram:

Sn−1 × [0, 1] Sn−1 × [0, 1]

D̄n D̄n

Id×µ

q q

φ

Because Id× µ is a homeomorphism that restricts to the identity on Sn−1 × 0,

it descends along q to a homeomorphism φ : D̄n → D̄n. Since Id × µ restricts

to the identity on Sn−1 ×
[
0, m2

)
, we can see that φ restricts to the identity on

q
(
Sn−1 ×

[
0, m2

))
= ν−1

[
0, m2

)
,

which is a neighborhood of 0. Next, recall that

Q̄ ⊆ ν−1[0,M ] = q
(
Sn−1 × [0,M ]

)
and q

(
Sn−1 × [0,m)

)
= ν−1[0,m) ⊆ U.

4In this proof, we write ν instead of ∥ · ∥, so that it is easier to notate inverse images.
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Since µ
(
[0,M ]

)
⊆ [0,m), we can conclude that

φ(Q̄) ⊆ φ ◦ q
(
Sn−1 × [0,M ]

)
= q ◦ (Id× µ)

(
Sn−1 × [0,M ]

)
⊆ q

(
Sn−1 × [0,m)

)
⊆ U.

Corollary 2.5. Suppose U,Q ⊆ Sn are open and Q̄ ̸= Sn. For any p ∈ U ∩Q,
there exists some homeomorphism φ : Sn → Sn that restricts to the identity on

a neighborhood of p and satisfies φ(Q̄) ⊆ U.

Proof. Choose a point x ∈ Sn − Q̄. Since Sn can be viewed as a quotient of D̄n

given by collapsing ∂Dn to a point, we can find a quotient map π : D̄n → Sn

where ∂Dn = π−1(x) is the only inverse set. We can then define

p0 = π−1(p), U0 = π−1(U) ∩Dn and Q0 = π−1(Q).

Because Q̄0 is compact and Sn is Hausdorff, we can see that π(Q̄0) = Q̄.5

Along with our initial assumption that x /∈ Q̄, this implies that Q̄0 ∩ ∂Dn = ∅.
It is also straightforward to check that U0, Q0 ⊆ Dn are open and p0 ∈ U0∩Q0,

so Lemma 2.4 yields some φ0 ∈ Homeo∂(D̄
n) that restricts to the identity on a

neighborhood of p0 and satisfies φ0(Q̄0) ⊆ U0. Consider the following diagram:

D̄n D̄n

Sn Sn

φ0

π π

φ

Since the map φ0 restricts to the identity on ∂Dn, it descends along π to define

a homeomorphism φ : Sn → Sn that restricts to the identity on a neighborhood

of π(p0) = p.6 Finally, using the fact that Q̄ = π(Q̄0), we have

φ(Q̄) = (φ ◦ π)(Q̄0) = (π ◦ φ0)(Q̄0) ⊆ π(U0) ⊆ U.

3 Bing Shrinking

Cellularity plays a key role, because the topology of a manifold is unchanged

when a cellular subset is collapsed to a single point (this phenomenon is called

“Bing shrinking”). We will stop just short of proving this fact in full generality.

5Since π is surjective, we have π(Q0) = π
(
π−1(Q)

)
= Q and thus π(Q̄0) ⊆ Q̄, by continuity.

Conversely, we have Q = π(Q0) ⊆ π(Q̄0) and thus Q̄ ⊆ π(Q̄0). This shows that π(Q̄0) = Q̄.
6If V0 ⊆ Dn is a neighborhood of p0 on which φ0 restricts to the identity, then φ restricts

to the identity on π(V0) ⊆ Sn, which is open because V0 is saturated with respect to π.
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Proposition 3.1. If C ⊆ Dn is a cellular subset, then there exists a surjection

f ∈ Map∂(D̄
n) such that C is the only inverse set under f .7

Proof. Pick a point p ∈ C. Since C is cellular in Dn, there exists a sequence of

embeddings fi : D̄
n → Dn with fi+1(D̄

n) ⊆ fi(D
n) for all i ∈ N, which satisfy

C =
⋂
i∈N

fi(D̄
n).

We also define open sets Vi =
{
x ∈ Dn : ∥x−p∥ < 21−i

}
, where ∥·∥ is the usual

norm on D̄n. We now inductively define homeomorphisms hi ∈ Homeo∂(D̄
n),

as follows. Let h0 = Id. Given i ≥ 1, we will define hi in terms of hi−1 so that:

• hi(p) = p;

• hi ◦ fi+1(D
n) ⊆ Vi;

• hi = hi−1 on D̄n − fi(D
n).

Note that h0 indeed satisfies the first two conditions, since f1(D
n) ⊆ Dn = V0.

Since p ∈ C ⊆ fi+1(D̄
n) ⊆ fi(D

n), we may consider the point pi = f−1
i (p) ∈ Dn

and define an open neighborhood of pi by

Ui = (hi−1 ◦ fi)−1(Vi) ∩Dn ⊆ Dn

By invariance of domain, we know that fi+1(D
n) is open in Dn, so we use the

fact that p ∈ fi+1(D
n) ⊆ fi(D

n) to define another open neighborhood of pi by

Qi = f−1
i

(
fi+1(D

n)
)
⊆ Dn

Since D̄n is compact, we can also see that fi+1(D̄
n) ⊆ fi(D

n) is closed in D̄n

and thus that f−1
i

(
fi+1(D̄

n)
)
⊆ Dn is closed. Then Q̄i ∩ ∂Dn = ∅, because

Q̄i ⊆ f−1
i

(
fi+1(D̄

n)
)
⊆ Dn

Since pi ∈ Ui ∩Qi, Lemma 2.4 yields a homeomorphism gi ∈ Homeo∂(D̄
n) that

satisfies gi(pi) = pi and gi(Q̄i) ⊆ Ui. It follows that

fi ◦ gi ◦ f−1
i : fi(D̄

n) → fi(D̄
n)

7It turns out that every f ∈ Map∂(D̄
n) is surjective, but proving this requires homology,

so we avoid it here. The gist of the proof is as follows: If p /∈ f(D̄n), we can describe a retract

g : D̄n − p → ∂Dn.

Then we get a retract g ◦ f : D̄n → ∂Dn, but no such map exists (see Corollary 2.15 in [H]).
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is a homeomorphism that fixes fi(∂D
n) ∪ {p} pointwise. We also consider

Id : D̄n − fi(D
n) → D̄n − fi(D

n)

Note that the two domains fi(D̄
n) and D̄n − fi(D

n) form a closed cover of D̄n

and that these two homeomorphisms agree on fi(∂D
n), which is the intersection

of their domains, so they glue together to give a homeomorphism g̃i : D̄
n → D̄n.

Since fi(D̄
n) ⊆ Dn, we know that g̃i fixes ∂D

n pointwise, so g̃i ∈ Homeo∂(D̄
n).

We now define hi = hi−1 ◦ g̃i ∈ Homeo∂(D̄
n). Since g̃i fixes p by construction

and hi−1 fixes p by the inductive hypothesis, we have hi(p) = p. The fact that

hi = hi−1 on D̄n − fi(D
n) is immediate, because g̃i = Id on this same domain.

Lastly, since fi+1(D̄
n) ⊆ fi(D

n), we have

hi ◦ fi+1(D
n) = hi−1 ◦ g̃i ◦ fi+1(D

n)

= hi−1 ◦ fi ◦ gi ◦ f−1
i ◦ fi+1(D

n)

= hi−1 ◦ fi ◦ gi(Qi)

⊆ hi−1 ◦ fi(Ui) ⊆ Vi

We have now verified the desired properties of hi, completing the inductive step.

Since hi−1 and hi are bijections D̄n → D̄n, these properties imply that

hi ◦ fi(Dn) = D̄n − hi
(
D̄n − fi(D

n)
)

= D̄n − hi−1

(
D̄n − fi(D

n)
)

= hi−1 ◦ fi(Dn) ⊆ Vi−1

Thus ∥hi − hi−1∥ ≤ 23−i on fi(D
n), because for any x ∈ fi(D

n), we have

∥hi(x)− hi−1(x)∥ ≤ ∥hi(x)− p∥+ ∥hi−1(x)− p∥ < 22−i + 22−i = 23−i

But we also have hi = hi−1 on D̄n−fi(Dn), so the inequality ∥hi−hi−1∥ ≤ 23−i

holds on all of D̄n. For any k ∈ N, we then have

∥hi+k − hi∥ =

∥∥∥∥∥∥
k∑

j=1

(hi+j − hi+j−1)

∥∥∥∥∥∥ ≤
k∑

j=1

∥hi+j − hi+j−1∥

≤
k∑

j=1

23−i−j = 23−i(1− 2−k) < 23−i

This shows that the sequence of maps hi ∈ Homeo∂(D̄
n) is uniformly Cauchy,

so it converges to a map f ∈ Map∂(D̄
n).8 It remains to show that f is surjective

and that C is its only inverse set.

8Since each hi ∈ Homeo∂(D̄
n) fixes ∂Dn pointwise, the same is true of their limit f.
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If x ∈ D̄n − fi+1(D
n), then x ∈ D̄n − fj(D

n) for any j ≥ i+ 1, so we get

hi(x) = hi+1(x) = · · · = hj(x).

It follows that f = hi on D̄
n−fi+1(D

n). But if y ∈ C, then we get y ∈ fj+1(D
n)

and thus hj(y) ∈ Vj for all j ∈ N. This means that
∥∥hj(y)−p∥ < 21−j and thus

f(y) = lim
j→∞

hj(y) = p.

Hence f(C) = {p}. Given distinct points x, y ∈ D̄n −C, we have x /∈ fi+1(D
n)

and y /∈ fj+1(D
n) for some i, j ∈ N. If k = max{i, j}, we have x, y /∈ fk+1(D

n)

and thus

f(x) = hk(x) ̸= hk(y) = f(y) and f(x) = hk(x) ̸= hk(p) = p,

because hk is injective and x ̸= p. Thus f−1(p) = C and the restriction

f : D̄n − C → D̄n − p

is injective, so C is the only inverse set. Given any z ∈ D̄n − p, we have z /∈ Vi

for some i ∈ N, which implies that h−1
i (z) /∈ fi+1(D

n) and thus f ◦ h−1
i (z) = z.

This shows that f is surjective, finally completing the proof.

Since D̄n is compact and Hausdorff, any surjection f ∈ Map∂(D̄
n) is closed

and thus a quotient map, so this proposition implies that collapsing C to a point

results in a quotient space homeomorphic to the original space D̄n. We can also

turn this around to prove that a certain space having D̄n as a quotient (under

a quotient map with certain specific properties) is itself homeomorphic to D̄n:

Lemma 3.2. Suppose that Q ⊆ Sn is open and f : Q̄→ D̄n is a surjective map

with exactly one inverse set C, such that f(∂Q) = ∂Dn. If C is cellular in Q,

then there exists a homeomorphism h : Q̄→ D̄n with h(∂Q) = ∂Dn.

Proof. Since C is a cellular subset of Q, there exists an embedding k : D̄n → Q

such that C ⊆ k(Dn). Note that k(Dn) ⊆ Q is open by invariance of domain,

so C is cellular in k(Dn) by Corollary 2.2 and hence k−1(C) is cellular in Dn.

By Proposition 3.1, there exists a surjection p ∈ Map∂(D̄
n) such that k−1(C)

is the only inverse set under p. It follows that

k ◦ p ◦ k−1 : k(D̄n) → k(D̄n)

is a surjective map that fixes k(∂Dn) pointwise, where C is the only inverse set.

We also consider the following identity map:

Id : Q̄− k(Dn) → Q̄− k(Dn)

11



Notice that the two domains k(D̄n) and Q̄ − k(Dn) form a closed cover of Q̄

and these two maps agree on k(∂Dn), which is the intersection of the domains.

Therefore, they glue together to define a map q : Q̄ → Q̄. It is straightforward

to confirm that q is surjective and that C is the only inverse set. Notice that Q̄

is compact, being a closed subset of Sn, so q is closed and thus a quotient map.

Now consider the following diagram:

Q̄ D̄n

Q̄

q

f

h

Since C is the only inverse set under either f or q, the surjective map f descends

to a bijective function h : Q̄→ D̄n satisfying f = h◦ q. But q is a quotient map,

so h is continuous. Because Q̄ is compact, the continuous bijection h : Q̄→ D̄n

is a homeomorphism. Since Q is open in Sn, we have

∂Q = Q̄−Q ⊆ Q̄− k(Dn).

Thus q restricts to the identity on ∂Q, so h(∂Q) = f(∂Q) = ∂Dn.

We conclude this section with one more technical lemma regarding quotient

maps like those in Proposition 3.1, which will be needed in our ultimate proof:

Lemma 3.3. If Z is a T4 space (normal and Hausdorff) and A ⊆ Z is closed,

then the quotient space Z/A (given by collapsing A to a point) is also T4.

Proof. Let p : Z → Z/A denote the quotient map. Every point in Z/A is closed,

because every fiber of the quotient map p is closed. Notice that a set B ⊆ Z is

saturated with respect to p if and only if A ⊆ B or A∩B = ∅. Consider disjoint
closed sets K1,K2 ⊆ Z/A. Then p−1(K1), p

−1(K2) ⊆ Z are closed, disjoint

and saturated. Since Z is normal, there exist disjoint open sets U1, U2 ⊆ Z

separating p−1(K1) and p
−1(K2). For i = 1 or 2, we now define

Vi =

{
Ui −A, A ∩ p−1(Ki) = ∅
Ui, A ⊆ p−1(Ki)

Then Vi is an open neighborhood of p−1(Ki), satisfying A ⊆ Vi or A ∩ Vi = ∅.
We also have V1 ∩ V2 ⊆ U1 ∩ U2 = ∅, so V1 and V2 are saturated, disjoint open

sets in Z separating p−1(K1) and p
−1(K2). It follows that p(V1) and p(V2) are

disjoint open sets in Z/A separating K1 and K2, as desired.
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4 Detecting Cellularity

To apply Lemma 3.2, we will need to be able to identify certain cellular subsets

of the sphere. First, we prove a small lemma on the connectivity of manifolds:

Lemma 4.1. Let X be a connected n-manifold with n > 1. If P ⊆ X is finite,

then the complement X − P is also connected.

Proof. Since points in X are closed,9 deleting any finite set of points results in

an open subset of X, which is also an n-manifold. As such, we may proceed by

induction and assume that P = {p} is a singleton. If X = Dn, then Lemma 2.3

yields a homeomorphism ψ : Dn → X with ψ(0) = p. Since Dn− 0 is connected

(being homeomorphic to Sn−1 × (0, 1]), it follows that X − p is connected.

In general, suppose for the sake of contradiction that X − p is disconnected.

Then we can write X − p = V ⊔W , where the sets V and W are open in X − p

and thus in X. Since X is an n-manifold, there is an open neighborhood U ∋ p

homeomorphic to Dn. Then U − p is connected, by the case considered above,

so it must lie entirely in either V or W . But if U−p ⊆ V , then U ∪V = {p}⊔V
is open in X, so the connectedness of X is contradicted by the decomposition

X =
(
{p} ⊔ V

)
⊔W.

If U − p ⊆W, we get an analogous contradiction. Thus X − p is connected.

With this lemma in hand, we can now proceed to the meat of this section,

which is an amalgam of Theorem 0 in [B] and Lemma 4.2 in [P].

Lemma 4.2. Suppose f : D̄n → Sn is a map with finitely many inverse sets,

all of which lie in Dn. Denote these inverse sets by C1, . . . , Ck and let ci ∈ Sn

denote the point with Ci = f−1(ci). Then we have:

(a) f(Dn) is a connected component of Sn − f(∂Dn), which we denote by E.

(b) Let I = C1 ∪ · · · ∪ Ck = {p ∈ D̄n : f−1
(
f(p)

)
contains multiple points}.

Then f restricts to a quotient map f : Dn → E and to a homeomorphism

f : Dn − I −→ E − {c1, . . . , ck}.

(c) If U ⊆ Dn is an open set that contains Ck and is disjoint from I − Ck,

then there exists a map g : D̄n → U that restricts to the identity on Ck

and whose inverse sets are precisely C1, . . . , Ck−1.

9Even with our weak definition of manifolds, points are always closed. A proof of this fact

is left as an exercise for the reader, since this lemma will only be used in situations where X

is clearly Hausdorff.
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(d) The sets C1, . . . , Ck are each cellular in Dn.

Proof. (a) Since all of the inverse sets of f lie in Dn, we can see that f |∂Dn is

injective and f(Dn) ∩ f(∂Dn) = ∅. Since ∂Dn is homeomorphic to Sn−1,

the complement Sn − f(∂Dn) has two connected components, each with

boundary f(∂Dn). Because f(Dn) is connected and disjoint from f(∂Dn),

it must lie in one of these connected components, which we call E. To prove

the assertion that f(Dn) = E, it remains to show that E − f(Dn) = ∅.

Note that I = C1 ∪ · · · ∪ Ck is closed, so Dn − I is open in Dn and thus

is an n-manifold. Since f is injective on Dn − I, invariance of domain

implies that f(Dn − I) is open in Sn. Since E ∩ f(∂Dn) = ∅, we have

E − f(D̄n) = E − f(Dn).

Thus E − f(Dn) is open in E (because f(D̄n) is closed in Sn). Therefore

E − f(I) =
(
E − f(Dn)

)
⊔ f(Dn − I)

is a partition of E−f(I) into two open sets. But f(I) is finite and E ⊆ Sn

is open and connected, so E−f(I) is connected by Lemma 4.1. Therefore,

either E − f(Dn) = ∅ or f(Dn − I) = ∅. But if we have f(Dn − I) = ∅,
then f(Dn) = f(I) is finite and therefore closed in Sn, which means that

f(D̄n) = f(Dn) ⊔ f(∂Dn)

is a partition of f(D̄n) into nonempty closed sets. But this contradicts the

connectedness of D̄n. Instead, we must have E − f(Dn) = ∅, as desired.

(b) Since D̄n is compact and Sn is Hausdorff, we can see that f : D̄n → f(D̄n)

is closed and thus is a quotient map. Note that Dn and Dn − I are both

open and saturated (the former contains every inverse set, while the latter

is disjoint from every inverse set), so the restrictions

f : Dn −→ f(Dn) and f : Dn − I −→ f(Dn − I)

are both quotient maps.10 We know that f(Dn) = E and it follows that

f(Dn − I) = E − {c1, . . . , ck}.

Since Dn − I is disjoint from every inverse set of f , the restriction

f : Dn − I → E − {c1, . . . , ck}

is an injective quotient map and therefore a homeomorphism.

10If q : X → Y is any quotient map and U ⊆ X is open and saturated, then the restriction

q : U → q(U) is again a quotient map (see Theorem 22.1 in [M]).
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(c) Since U contains Ck and is disjoint from every other inverse set, we can

see that U is saturated with respect to f . By part (b), it follows that f(U)

is open in E and thus in Sn. We also have Ē ̸= Sn and

ck ∈ f(U) ⊆ E − {c1, . . . , ck−1} ⊆ E,

so Corollary 2.5 yields a homeomorphism φ : Sn → Sn with φ(Ē) ⊆ f(U),

which restricts to the identity on an open set W ⊆ Sn that contains ck.

Since f(D̄n) ⊆ Ē (by part (a) and the continuity of f) and φ(ck) = ck,

we can see that

φ ◦ f(D̄n − Ck) ⊆ φ(Ē − {ck}) ⊆ f(U)− {ck} ⊆ E − {c1, . . . , ck}.

By part (b), we then get a well-defined, injective map

f−1 ◦ φ ◦ f : D̄n − Ck → Dn − I.

We also consider the following identity map:

Id : f−1(W ) → f−1(W )

Because ck ∈ W and φ restricts to the identity on W , the two domains

D̄n − Ck and f−1(W ) form an open cover of D̄n and these two maps

agree on the intersection of their domains. Therefore, they glue together

to define a map g : D̄n → Sn. Because Ck ⊆ f−1(W ), the map g clearly

restricts to the identity on Ck, so g(Ck) = Ck ⊆ U. Since U is saturated

with respect to f , we also have

g(D̄n − Ck) = f−1 ◦ φ ◦ f(D̄n − Ck) ⊆ f−1
(
f(U)

)
= U.

Thus g(D̄n) ⊆ U. It remains to determine the inverse sets of g. Note that

g(D̄n − Ck) ⊆ Dn − I ⊆ Dn − Ck.

Thus if x ∈ Ck, then g
−1(x) ⊆ Ck and hence g−1

(
g(x)

)
= g−1(x) = {x}.

Therefore, Ck does not intersect any inverse sets of g. In the composition

f−1 ◦ φ ◦ f : D̄n − Ck → Dn − I,

the maps f−1 and φ are both homeomorphisms, so the inverse sets of g

are just the intersections of D̄n−Ck with the inverse sets of f . Therefore,

the inverse sets of g are precisely C1, . . . , Ck−1.
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(d) The claim is vacuous if k = 0, so we first assume that k = 1. Then I = C1,

so for any open set U ⊆ Dn containing C1, part (c) shows that there exists

a map g : D̄n → U that restricts to the identity on C1 and has no inverse

sets. Thus g is injective and C1 = g(C1) ⊆ g(Dn), so C1 is cellular in Dn.

For k > 1, we proceed by induction. Letting U = Dn − (C1 ∪ . . . Ck−1),

we may apply part (c) to get a map g : D̄n → U whose inverse sets are

precisely C1, . . . , Ck−1. Fix some embedding h : Dn → Sn. Then the map

h ◦ g : D̄n → Sn has inverse sets C1, . . . , Ck−1 ⊆ Dn. By induction on k,

we see that C1, . . . , Ck−1 are each cellular in Dn. Swapping C1 and Ck,

the same argument shows that Ck is cellular in Dn.

To conclude this section, we provide a slight rephrasing of a specific case of

Lemma 4.2(d) that will be most relevant in our usage:

Lemma 4.3. If g : Sn → Sn is a map with exactly two inverse sets B and C,

then B and C are both cellular in Sn.

Proof. Since B and C are both closed, the complement Sn − (B ∪ C) is open

and non-empty (having Sn = B⊔C would contradict the connectedness of Sn).

Hence, we can find a standard (see footnote 1) open disk V ⊆ Sn such that

V̄ ⊆ Sn − (B ∪ C).

The complementary region E = Sn − V̄ is an open set containing B and C,

which admits a homeomorphism h : D̄n → Ē with h(Dn) = E. Then the map

g ◦ h : D̄n → Sn

has precisely two inverse sets, h−1(B) and h−1(C), both of which lie in Dn.

Hence, Lemma 4.2(d) implies that h−1(B) and h−1(C) are both cellular in Dn,

so B and C are both cellular in E and therefore in Sn.

5 Detecting Disks

We can now combine the tools that we have accumulated into a proof of the

generalized Schoenflies theorem. Consider an embedding g : Sn−1× [0, 1] → Sn.

For brevity, given any subset R ⊆ [0, 1], we will write

Sn−1
R = g(Sn−1 ×R).

Notice that if R is connected and t /∈ R, then Sn−1
R is connected and therefore is

contained in whichever component of Sn − Sn−1
t it intersects. The main result

that we will prove is:
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Theorem 5.1 (Generalized Schoenflies Theorem). Let Q denote the connected

component of Sn−Sn−1
1 that contains the connected set Sn−1

0 . Then there exists

a homeomorpism h : Q̄→ D̄n with h(∂Q) = ∂Dn.

Proof. In the course of the proof, we will need to name a couple other key

subsets of the sphere. Let P denote the other connected component of Sn−Sn−1
1

(the one not containing Sn−1
0 ) and let C denote the connected component of

Sn − Sn−1
1/2 not containing Sn−1

1 . We next prove one last lemma:

Lemma 5.2. The sets that we have defined satisfy the following relationships: 11

(a) Sn−1
0 ⊆ C

Proof. If not, then the component of Sn − Sn−1
1/2 containing Sn−1

1 must

also contain Sn−1
0 and therefore must contain Sn−1

[0, 12 )∪( 1
2 ,1]

. It follows that

C ⊆ Sn−Sn−1
1/2 is disjoint from Sn−1

(0,1), which is a neighborhood of Sn−1
1/2 by

invariance of domain. But this contradicts the fact that Sn−1
1/2 = ∂C.

(b) C̄ ⊆ Q

Proof. The closure C̄ = C ∪ Sn−1
1/2 is connected and disjoint from Sn−1

1 ,

so C̄ lies in one of the connected components of Sn − Sn−1
1 . But we know

that Sn−1
0 is a subset of both Q and C̄, so we must have C̄ ⊆ Q.

(c) C̄ ∩ Sn−1
[0,1] = Sn−1

[0, 12 ]

Proof. The containment Sn−1
[0, 12 )

⊆ C follows from Sn−1
0 ⊆ C. The fact that

Sn−1
[ 12 ,1]

and C are disjoint follows from the definition of C as the component

of Sn − Sn−1
1/2 not containing Sn−1

1 . This implies that C ∩ Sn−1
[0,1] = Sn−1

[0, 12 )

and therefore that

C̄ ∩ Sn−1
[0,1] =

(
C ∪ Sn−1

1/2

)
∩ Sn−1

[0,1] = Sn−1
[0, 12 )

∪ Sn−1
1/2 = Sn−1

[0, 12 ]

(d) P̄ ∩ Sn−1
[0,1] = Sn−1

1

Proof. Since P and Q are the components of Sn − Sn−1
1 , we have

Sn = P ⊔Q ⊔ Sn−1
1 .

By assumption, we have Sn−1
0 ⊆ Q and thus Sn−1

[0,1) ⊆ Q. This implies that

P and Sn−1
[0,1] are disjoint, so we get

P̄ ∩ Sn−1
[0,1] = (P ∪ Sn−1

1 ) ∩ Sn−1
[0,1] = Sn−1

1

11To not get bogged down in the details, it may help to skip the proofs of these assertions,

at least on a first pass.
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(e) Q = C̄ ∪ Sn−1
[0,1)

Proof. Since Q is connected and it contains the set C̄ ∪Sn−1
[0,1) by part (b),

we need only show that this set is clopen in Q. The set

Q ∩
(
C̄ ∪ Sn−1

[0,1]

)
= C̄ ∪ Sn−1

[0,1)

is certainly closed in Q. Since Sn−1
0 ⊆ C and C̄ = C ∪Sn−1

1/2 , we also have

C ∪ Sn−1
(0,1) = C̄ ∪ Sn−1

[0,1).

This set is open in Sn and thus in Q, since Sn−1
(0,1) and C are open in Sn.

We now define several maps that are organized into a commutative diagram:

Sn−1 × [0, 1] D̄n Sn

Sn X Y

g

π1

h1

π2

h2

q1

q

q2

The maps π1, π2, q1 and q2 are each quotient maps given by collapsing a closed

set to a point: π1 collapses Sn−1 × [0, 12 ] and π2 collapses ∂Dn = π1(S
n−1 × 1);

q1 collapses C̄ and q2 further collapses q1(P̄ ). The maps h1 and h2 are injections

descending from g, which exist by parts (c) and (d) of Lemma 5.2. For brevity,

we also write q = q2 ◦ q1. Note also that the quotient spaces X and Y are both

Hausdorff by Lemma 3.3.

Notice that Lemma 5.2(e) implies that Q̄ = Q ∪ Sn−1
1 = C̄ ∪ Sn−1

[0,1] . Since q1

collapses C̄ to a point and C̄ ∩ Sn−1
[0,1] ̸= ∅, we have q1(C̄) ⊆ q1

(
Sn−1
[0,1]

)
and thus

q1(Q̄) = q1(C̄) ∪ q1
(
Sn−1
[0,1]

)
= q1

(
Sn−1
[0,1]

)
= q1 ◦ g

(
Sn−1 × [0, 1]

)
= h1 ◦ π1

(
Sn−1 × [0, 1]

)
= h1(D̄

n).

Since q collapses P̄ to a point and P̄ ∩ Q̄ ̸= ∅, we similarly have q(P̄ ) ⊆ q(Q̄).

Combining this with P̄ ∪ Q̄ = Sn and the previous observation, we can see that

Y = q(Sn) = q(P̄ ) ∪ q(Q̄) = q(Q̄)

= q2 ◦ q1(Q̄) = q2 ◦ h1(D̄n)

= h2 ◦ π2(D̄n) = h2(S
n).
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Thus h2 is a bijection, while h1 is an injection with image q1(Q̄).

Since D̄n and Sn are compact, while X and Y are Hausdorff, it follows that

h2 is a homeomorphism and h1 is an embedding onto q1(Q̄). Hence, the map

h−1
2 ◦ q : Sn → Sn

is well-defined and has exactly two inverse sets: C̄ and P̄ .12 Lemmas 4.3 and 2.2

then imply that C̄ is cellular in Sn and thus in Q. We also consider the map

f = h−1
1 ◦ q1 : Q̄→ D̄n

Since h1 : D̄n → q1(Q̄) is a homeomorphism, this map is well-defined, surjective,

and has exactly one inverse set C̄ (because C̄ ⊆ Q). Notice also that

f(∂Q) = f(Sn−1
1 ) = f ◦ g(Sn−1 × 1)

= h−1
1 ◦ q1 ◦ g(Sn−1 × 1)

= π1(S
n−1 × 1) = ∂Dn

Thus, the desired homeomorphism h : Q̄→ D̄n is guaranteed by Lemma 3.2.
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