The Generalized Schoenflies Theorem

Nikhil Sahoo

In this note, I will spell out various details of the proofs in [B]. Remarkably, the techniques used in that paper are all of the sort that one would encounter in a first course on point-set topology (e.g. Chapters 2-4 of [M]). I have done my best to gear my explanations towards a reader who only has this background, although we will need to black-box one result, which is proved using homology.

Contents

1 Separating Spheres 1
2 Cellular Subsets 4
3 Bing Shrinking 8
4 Detecting Cellularity 13
5 Detecting Disks 16

1 Separating Spheres

We first establish some notation and terminology. Let S^{n} denote the n-sphere, let \bar{D}^{n} denote the closed n-disk, let D^{n} denote its interior and $\partial D^{n}=\bar{D}^{n}-D^{n}$. We will write "map" to mean "continuous function." Given any map $f: X \rightarrow Y$, an inverse set under f is any fiber $f^{-1}(y) \subseteq X$ containing more than one point. We will assume that $n>1$, so that S^{n-1} is connected (most of the results, including Theorems 1.1 and 5.1, are still true and much more straightforward to prove when $n=0$ or 1).

Our first result is the only one that we have to state without a full proof:
Theorem 1.1 (Jordan-Brouwer Theorem). For any injective map $f: \bar{D}^{k} \rightarrow S^{n}$, the complement $S^{n}-f\left(\bar{D}^{k}\right)$ is connected. For any injective map $g: S^{n-1} \rightarrow S^{n}$, the complement $S^{n}-g\left(S^{n-1}\right)$ has two components, each with boundary $g\left(S^{n-1}\right)$.

Proof. Homology theory is required to prove the connectedness of $S^{n}-f\left(\bar{D}^{k}\right)$ and the fact that $S^{n}-g\left(S^{n-1}\right)$ has two components (Proposition 2B. 1 in [H]). As such, we will take this result for granted and move on to recounting the proof of the final claim, as it is laid out in [S].

Let B and C be the two components of $S^{n}-g\left(S^{n-1}\right)$. Connected components of any topological space are closed, so B and C are both closed in $S^{n}-g\left(S^{n-1}\right)$. But they are each others' complements, so they are both open in $S^{n}-g\left(S^{n-1}\right)$. Since $g\left(S^{n-1}\right)$ is compact and thus closed in S^{n}, it follows that $S^{n}-g\left(S^{n-1}\right)$ is open in S^{n}. Thus B and C are open in S^{n}. We will show that $\partial B=g\left(S^{n-1}\right)$ (an analogous proof applies to C). Note that we have a disjoint union

$$
S^{n}=B \sqcup C \sqcup g\left(S^{n-1}\right)
$$

Since B is open, we have $\partial B=\bar{B}-B$, so we need to prove $\bar{B}=B \sqcup g\left(S^{n-1}\right)$. But C is also open, so $B \sqcup g\left(S^{n-1}\right)$ is closed and thus $B \subseteq \bar{B} \subseteq B \sqcup g\left(S^{n-1}\right)$. For the sake of contradiction, suppose that there exists some $x \in g\left(S^{n-1}\right)-\bar{B}$. Since $x \notin \bar{B}$, there is an open set $U \subseteq S^{n}$ with $x \in U$ and $U \cap B=\emptyset$.

Let $\tilde{x}=g^{-1}(x)$ and consider the open neighborhood $g^{-1}(U) \ni \tilde{x}$ in S^{n-1}. Letting $V \ni \tilde{x}$ be a standard open disk, ${ }^{1}$ which is small enough that $V \subseteq g^{-1}(U)$, we can see that the complement $E=S^{n-1}-V$ is homeomorphic to \bar{D}^{n-1}. Thus

$$
S^{n}-g(E)=B \sqcup C \sqcup g(V)
$$

is connected, by the first portion of this theorem. The open set $W=U-g(E)$ must satisfy $W \subseteq C \sqcup g(V)$, because $W \subseteq S^{n}-g(E)$ and $W \cap B \subseteq U \cap B=\emptyset$. We also get $g(V) \subseteq W$, because $g(V) \subseteq U$ by assumption and $g(V) \cap g(E)=\emptyset$ by the injectivity of g. Thus $C \sqcup g(V)=C \cup W$ and so we can write

$$
S^{n}-g(E)=B \sqcup C \sqcup g(V)=B \sqcup(C \cup W)
$$

Since B, C and W are open, this contradicts the connectedness of $S^{n}-g(E)$.
Corollary 1.2. If $f: \bar{D}^{n} \rightarrow D^{n}$ is a continuous injection, then $f\left(D^{n}\right)$ is open.
Proof. Here, we will essentially just replicate the proof of Theorem 2B. 3 in [H]. Fix some point $x \in S^{n}$. Since $S^{n}-x$ is open in S^{n} and homeomorphic to D^{n}, it is equivalent to consider a continuous injection $f: \bar{D}^{n} \rightarrow S^{n}$ with $x \notin f\left(\bar{D}^{n}\right)$ and show that $f\left(D^{n}\right)$ is open in S^{n}. Note that we have a disjoint union

$$
S^{n}=f\left(D^{n}\right) \sqcup f\left(\partial D^{n}\right) \sqcup\left(S^{n}-f\left(\bar{D}^{n}\right)\right)
$$

[^0]Since S^{n-1} is homeomorphic to ∂D^{n}, Theorem 1.1 implies that

$$
S^{n}-f\left(\partial D^{n}\right)=f\left(D^{n}\right) \sqcup\left(S^{n}-f\left(\bar{D}^{n}\right)\right)
$$

has exactly two connected components. As remarked in the proof of the theorem, each of these components is open in S^{n}. But Theorem 1.1 also implies that $S^{n}-f\left(\bar{D}^{n}\right)$ is connected. Since $f\left(D^{n}\right)$ is clearly also connected, these sets are the aforementioned components of $S^{n}-f\left(\partial D^{n}\right)$, so they are open in S^{n}.

In the case where $n=2$, the Jordan-Schoenflies theorem states not only that the complement $S^{2}-g\left(S^{1}\right)$ has two components, but that the closure of each component is homeomorphic to \bar{D}^{2}. When $n>2$, the analogous assertion may fail to hold, as demonstrated by pathologies like the Alexander horned sphere. But this generalization to higher dimensions does hold when g is "nice enough" in a sense that we will make precise later on (this is what we will ultimately prove in this note). As a first step, we can prove another result due to Brouwer, called invariance of domain (one form of which is the corollary we just proved). This is a theorem concerning manifolds, so we a recall a weak definition here:

Definition 1.3. A topological space X is an n-manifold if every point $x \in X$ admits an open neighborhood $U \ni x$ that is homeomorphic to $D^{n} .^{2}$

If the reader is encountering manifolds for the first time in this definition, they may find the following exercise instructive: prove that any open subset of an n-manifold is an n-manifold (this will be used without comment later on).

Proposition 1.4 (Invariance of Domain). Suppose X and Y are n-manifolds and $f: X \rightarrow Y$ is a continuous injection. Then $f(X) \subseteq Y$ is open.

Proof. To prove that $f(X) \subseteq Y$ is open, we consider a point $x \in X$ and show that $f(X)$ contains a neighborhood of $f(x)$. Since X and Y are n-manifolds, there exist open sets $U \ni x$ and $V \ni f(x)$ and homeomorphisms $h: D^{n} \rightarrow U$ and $k: D^{n} \rightarrow V$. Let $\tilde{x}=h^{-1}(x)$ and notice that $(f \circ h)^{-1}(V) \subseteq D^{n}$ is an open set containing \tilde{x}. Therefore, there is a small embedded disk $g: \bar{D}^{n} \rightarrow D^{n}$ with

$$
\tilde{x} \in g\left(D^{n}\right) \quad \text { and } \quad g\left(\bar{D}^{n}\right) \subseteq(f \circ h)^{-1}(V)
$$

These maps are illustrated in the following diagram:

[^1]

Since $(f \circ h \circ g)\left(\bar{D}^{n}\right) \subseteq V$ and all of these maps are injective, we get a continuous injection $k^{-1} \circ f \circ h \circ g: \bar{D}^{n} \rightarrow D^{n}$. It follows from Corollary 1.2 that the set

$$
\left(k^{-1} \circ f \circ h \circ g\right)\left(D^{n}\right) \subseteq D^{n}
$$

is open and therefore that $(f \circ h \circ g)\left(D^{n}\right)$ is open in V. Since V is open in Y and $\tilde{x} \in g\left(D^{n}\right)$, it follows that $(f \circ h \circ g)\left(D^{n}\right) \subseteq f(X)$ is open in Y and contains the point $(f \circ h)(\tilde{x})=f(x)$, as desired.

The quintessential application of invariance of domain is in showing that the dimension of a manifold is well-defined, i.e. if a non-empty topological space X is an n-manifold and an m-manifold, then $n=m$. But we will only need to use it to directly identify open sets in various proofs.

2 Cellular Subsets

The key technical notion used in [B] is that of a cellular subset, for which it will be useful to establish two equivalent definitions:

Definition 2.1. Let X be a metrizable n-manifold and consider a subset $C \subseteq X$. The following two conditions are equivalent:
(a) There is a sequence of embeddings $f_{i}: \bar{D}^{n} \rightarrow X$ with $f_{i+1}\left(\bar{D}^{n}\right) \subseteq f_{i}\left(D^{n}\right)$ for all $i \in \mathbb{N}$, which satisfy

$$
C=\bigcap_{i \in \mathbb{N}} f_{i}\left(\bar{D}^{n}\right)
$$

(b) For any open set $U \subseteq X$ with $C \subseteq U$, there is an injective map $g: \bar{D}^{n} \rightarrow U$, which satifies $C \subseteq g\left(D^{n}\right)$.

If these equivalent conditions hold, we will say that C is cellular in X.
Proof. We need to prove that each condition implies the other.
$(\mathrm{a}) \Longrightarrow(\mathrm{b}):$ Suppose the embeddings f_{i} satisfy (a) and let $U \subseteq X$ be an open set with $C \subseteq U$. For any $i \in \mathbb{N}$, we have $C \subseteq f_{i+1}\left(\bar{D}^{n}\right) \subseteq f_{i}\left(D^{n}\right)$.

Therefore, we just need to find some $i \in \mathbb{N}$ such that $f_{i}\left(\bar{D}^{n}\right) \subseteq U$. If no such $i \in \mathbb{N}$ existed, we would have a descending sequence

$$
f_{1}\left(\bar{D}^{n}\right)-U \supseteq f_{2}\left(\bar{D}^{n}\right)-U \supseteq f_{3}\left(\bar{D}^{n}\right)-U \supseteq \ldots
$$

of non-empty, compact subsets. But then the intersection

$$
\bigcap_{i \in \mathbb{N}}\left(f_{i}\left(\bar{D}^{n}\right)-U\right)=C-U
$$

would be non-empty, contradicting the assumption that $C \subseteq U$.
$(\mathrm{b}) \Longrightarrow(\mathrm{a}):$ If $C \neq \bar{C}$, we can choose some $x \in \bar{C}-C$ and set $U=X-x$. Then (b) yields an injective map $g: \bar{D}^{n} \rightarrow U$ with $C \subseteq g\left(D^{n}\right)$. Since \bar{D}^{n} is compact and X is Hausdorff, the set $g\left(\bar{D}^{n}\right)$ is closed in X and thus $x \in \bar{C} \subseteq g\left(\bar{D}^{n}\right)$, which contradicts $g\left(\bar{D}^{n}\right) \subseteq U$. Thus $C=\bar{C}$ is closed in X.

Now let d be a metrization of X (i.e. a metric inducing the given topology on X). For each $i \in \mathbb{N}$, the set

$$
V_{i}=\left\{x \in X: d(x, C)<\frac{1}{i}\right\}=\bigcup_{c \in C}\left\{x \in X: d(x, c)<\frac{1}{i}\right\}
$$

is clearly open and contains C. These sets also clearly satisfy

$$
\bigcap_{i \in \mathbb{N}} V_{i}=\bar{C}=C
$$

We inductively define maps $f_{i}: \bar{D}^{n} \rightarrow X$ and open sets $U_{i} \supseteq C$, as follows. Let $U_{0}=X$. For any $i \geq 1$, we define $f_{i}: \bar{D}^{n} \rightarrow U_{i-1}$ to be the injective map given by (b) and let $U_{i}=f_{i}\left(D^{n}\right) \cap V_{i}$. For this method to work, each U_{i} must be open and contain C. This is obvious for U_{0}. Whenever $i \geq 1$, we can see that $f_{i}\left(D^{n}\right)$ is open by invariance of domain and contains C by the statement of (b) that was used to define f_{i}. But we already remarked that the same is true of each V_{i}, so it is true of the intersections U_{i}. Notice that $f_{i+1}\left(\bar{D}^{n}\right) \subseteq U_{i} \subseteq f_{i}\left(D^{n}\right)$ by definition and that

$$
C \subseteq \bigcap_{i \in \mathbb{N}} f_{i+1}\left(\bar{D}^{n}\right) \subseteq \bigcap_{i \in \mathbb{N}} U_{i} \subseteq \bigcap_{i \in \mathbb{N}} V_{i}=C
$$

Because each $f_{i}: \bar{D}^{n} \rightarrow X$ is an injective map from a compact space to a Hausdorff space, it is necessarily an embedding.

From the second definition of a cellular subset, we can see that this notion is hereditary with respect to the ambient manifold, in the following sense:

Corollary 2.2. Let X be any metrizable n-manifold and let $V \subseteq X$ be open. Then V is a metrizable n-manifold and a subset $C \subseteq V$ is cellular in V if and only if it is cellular in X.

We leave the proof of this corollary as an exercise for the reader and move on to demonstrate the existence of various self-homeomorphisms of \bar{D}^{n} and S^{n}, which do not directly involve cellularity, but will be of use later. Let $\operatorname{Map}_{\partial}\left(\bar{D}^{n}\right)$ denote the set of maps $f: \bar{D}^{n} \rightarrow \bar{D}^{n}$ that fix ∂D^{n} pointwise and let

$$
\operatorname{Homeo}_{\partial}\left(\bar{D}^{n}\right)=\left\{f \in \operatorname{Map}_{\partial}\left(\bar{D}^{n}\right): f \text { is a homemorphism }\right\} .
$$

Lemma 2.3. For any $p \in D^{n}$, there exists $\psi \in \operatorname{Homeo}_{\partial}\left(\bar{D}^{n}\right)$ with $\psi(0)=p .{ }^{3}$
Proof. We first define a map $\Psi: S^{n-1} \times[0,1] \rightarrow \bar{D}^{n}$ by $\Psi(v, t)=p+t(v-p)$. This satisfies $\Psi^{-1}(p)=S^{n-1} \times 0$. To prove that this is the only inverse set, suppose that $t_{1}, t_{2}>0$ and $\Psi\left(v_{1}, t_{1}\right)=\Psi\left(v_{2}, t_{2}\right)$. Then $t_{1} v_{1}-t_{2} v_{2}=\left(t_{1}-t_{2}\right) p$, so if $t_{1}=t_{2}$, then we may conclude that $v_{1}=v_{2}$. For the sake of contradiction, suppose that $t_{1} \neq t_{2}$. Then the reverse triangle inequality implies that

$$
\|p\|=\frac{\left\|t_{1} v_{1}-t_{2} v_{2}\right\|}{\left|t_{1}-t_{2}\right|} \geq \frac{\left|t_{1}\left\|v_{1}\right\|-t_{2}\left\|v_{2}\right\|\right|}{\left|t_{1}-t_{2}\right|}=\frac{\left|t_{1}-t_{2}\right|}{\left|t_{1}-t_{2}\right|}=1
$$

But this contradicts our assumption that $p \in D^{n}$. Hence, the map Ψ is injective on $S^{n-1} \times(0,1]$. Now consider an arbitrary point $w \in \bar{D}^{n}-p$ and define

$$
f(t)=\left\|\frac{1}{t}(w-p)+p\right\|
$$

This defines a map $f:(0,1] \rightarrow[0, \infty)$ with $f(1)=\|w\| \leq 1$. We also have

$$
\begin{aligned}
t \leq \frac{\|w-p\|}{1+\|p\|} \Longrightarrow f(t) & =\left\|\frac{1}{t}(w-p)+p\right\| \\
& \geq \frac{1}{t}\|w-p\|-\|p\| \\
& \geq 1+\|p\|-\|p\|=1
\end{aligned}
$$

By the intermediate value theorem, there exists some $t \in(0,1]$ with $f(t)=1$. We can then set $v=\frac{1}{t}(w-p)+p \in S^{n-1}$ and immediately see that $\Psi(v, t)=w$. Hence, the map Ψ is surjective. Define the quotient map $q: S^{n-1} \times[0,1] \rightarrow \bar{D}^{n}$ by $q(v, t)=t v$. Since q simply collapses $S^{n-1} \times 0$ to a point, the map Ψ descends along the quotient map q to define a bijective map $\psi: \bar{D}^{n} \rightarrow \bar{D}^{n}$ with $\psi(0)=p$. Since \bar{D}^{n} is compact, this map ψ is a homeomorphism. Given any $v \in S^{n-1}$, we clearly have $q(v, 1)=v=\Psi(v, 1)$, so ψ fixes $S^{n-1}=\partial D^{n}$ pointwise.

[^2]Lemma 2.4. Suppose $U, Q \subseteq D^{n}$ are open and $\bar{Q} \cap \partial D^{n}=\emptyset$ (where \bar{Q} refers to the closure in $\left.\bar{D}^{n}\right)$. Given any $p \in U \cap Q$, there exists some $\varphi \in \operatorname{Homeo}_{\partial}\left(\bar{D}^{n}\right)$ that restricts to the identity on a neighborhood of p and satisfies $\varphi(\bar{Q}) \subseteq U$.

Proof. Applying Lemma 2.3, we may assume that $p=0$. Since the usual norm $\nu: \mathbb{R}^{n} \rightarrow[0,1]$ is a continuous map, ${ }^{4}$ the compact set

$$
\bar{Q} \subseteq D^{n}=\nu^{-1}[0,1)
$$

admits some $M \in(0,1)$ such that $\nu(\bar{Q}) \subseteq[0, M]$. Since $U \in D^{n}$ is an open set containing 0 , there is some small radius $m \in(0, M)$ with $\nu^{-1}[0, m) \subseteq U$. Next, we can define an increasing, piecewise-linear homeomorphism $\mu:[0,1] \rightarrow[0,1]$ by linear interpolation between the points $(0,0),\left(\frac{m}{2}, \frac{m}{2}\right),\left(\frac{M+1}{2}, m\right)$ and $(1,1)$. Letting $a=\frac{m}{m-M-1}$ and $b=\frac{m-1}{M-1}$, we can make this explicit by writing

$$
\mu(t)=\left\{\begin{array}{cc}
t, & 0 \leq 2 t \leq m \\
-a x+\frac{m}{2}(a+1), & m \leq 2 t \leq M+1 \\
2 b x+1-2 b, & M+1 \leq 2 t \leq 2
\end{array}\right.
$$

This is defined so that $\mu(t)=t$ whenever $t<\frac{m}{2}$ and $\mu(t)<m$ whenever $t \leq M$, because $M<\frac{M+1}{2}$ and $\mu\left(\frac{M+1}{2}\right)=m$. As in the previous proof, we also consider the quotient map $q: S^{n-1} \times[0,1] \rightarrow \bar{D}^{n}$ given by $q(v, t)=t v$, which collapses $S^{n-1} \times 0$ to a point. Now consider the following diagram:

Because $\operatorname{Id} \times \mu$ is a homeomorphism that restricts to the identity on $S^{n-1} \times 0$, it descends along q to a homeomorphism $\varphi: \bar{D}^{n} \rightarrow \bar{D}^{n}$. Since Id $\times \mu$ restricts to the identity on $S^{n-1} \times\left[0, \frac{m}{2}\right)$, we can see that φ restricts to the identity on

$$
q\left(S^{n-1} \times\left[0, \frac{m}{2}\right)\right)=\nu^{-1}\left[0, \frac{m}{2}\right)
$$

which is a neighborhood of 0 . Next, recall that

$$
\bar{Q} \subseteq \nu^{-1}[0, M]=q\left(S^{n-1} \times[0, M]\right) \quad \text { and } \quad q\left(S^{n-1} \times[0, m)\right)=\nu^{-1}[0, m) \subseteq U
$$

[^3]Since $\mu([0, M]) \subseteq[0, m)$, we can conclude that

$$
\begin{aligned}
\varphi(\bar{Q}) & \subseteq \varphi \circ q\left(S^{n-1} \times[0, M]\right) \\
& =q \circ(\operatorname{Id} \times \mu)\left(S^{n-1} \times[0, M]\right) \\
& \subseteq q\left(S^{n-1} \times[0, m)\right) \subseteq U
\end{aligned}
$$

Corollary 2.5. Suppose $U, Q \subseteq S^{n}$ are open and $\bar{Q} \neq S^{n}$. For any $p \in U \cap Q$, there exists some homeomorphism $\varphi: S^{n} \rightarrow S^{n}$ that restricts to the identity on a neighborhood of p and satisfies $\varphi(\bar{Q}) \subseteq U$.

Proof. Choose a point $x \in S^{n}-\bar{Q}$. Since S^{n} can be viewed as a quotient of \bar{D}^{n} given by collapsing ∂D^{n} to a point, we can find a quotient map $\pi: \bar{D}^{n} \rightarrow S^{n}$ where $\partial D^{n}=\pi^{-1}(x)$ is the only inverse set. We can then define

$$
p_{0}=\pi^{-1}(p), \quad U_{0}=\pi^{-1}(U) \cap D^{n} \quad \text { and } \quad Q_{0}=\pi^{-1}(Q)
$$

Because \bar{Q}_{0} is compact and S^{n} is Hausdorff, we can see that $\pi\left(\bar{Q}_{0}\right)=\bar{Q} \cdot{ }^{5}$ Along with our initial assumption that $x \notin \bar{Q}$, this implies that $\bar{Q}_{0} \cap \partial D^{n}=\emptyset$. It is also straightforward to check that $U_{0}, Q_{0} \subseteq D^{n}$ are open and $p_{0} \in U_{0} \cap Q_{0}$, so Lemma 2.4 yields some $\varphi_{0} \in \operatorname{Homeo}_{\partial}\left(\bar{D}^{n}\right)$ that restricts to the identity on a neighborhood of p_{0} and satisfies $\varphi_{0}\left(\bar{Q}_{0}\right) \subseteq U_{0}$. Consider the following diagram:

Since the map φ_{0} restricts to the identity on ∂D^{n}, it descends along π to define a homeomorphism $\varphi: S^{n} \rightarrow S^{n}$ that restricts to the identity on a neighborhood of $\pi\left(p_{0}\right)=p \cdot{ }^{6}$ Finally, using the fact that $\bar{Q}=\pi\left(\bar{Q}_{0}\right)$, we have

$$
\varphi(\bar{Q})=(\varphi \circ \pi)\left(\bar{Q}_{0}\right)=\left(\pi \circ \varphi_{0}\right)\left(\bar{Q}_{0}\right) \subseteq \pi\left(U_{0}\right) \subseteq U
$$

3 Bing Shrinking

Cellularity plays a key role, because the topology of a manifold is unchanged when a cellular subset is collapsed to a single point (this phenomenon is called "Bing shrinking"). We will stop just short of proving this fact in full generality.

[^4]Proposition 3.1. If $C \subseteq D^{n}$ is a cellular subset, then there exists a surjection $f \in \operatorname{Map}_{\partial}\left(\bar{D}^{n}\right)$ such that C is the only inverse set under $f .{ }^{7}$

Proof. Pick a point $p \in C$. Since C is cellular in D^{n}, there exists a sequence of embeddings $f_{i}: \bar{D}^{n} \rightarrow D^{n}$ with $f_{i+1}\left(\bar{D}^{n}\right) \subseteq f_{i}\left(D^{n}\right)$ for all $i \in \mathbb{N}$, which satisfy

$$
C=\bigcap_{i \in \mathbb{N}} f_{i}\left(\bar{D}^{n}\right)
$$

We also define open sets $V_{i}=\left\{x \in D^{n}:\|x-p\|<2^{1-i}\right\}$, where $\|\cdot\|$ is the usual norm on \bar{D}^{n}. We now inductively define homeomorphisms $h_{i} \in \operatorname{Homeo}_{\partial}\left(\bar{D}^{n}\right)$, as follows. Let $h_{0}=\mathrm{Id}$. Given $i \geq 1$, we will define h_{i} in terms of h_{i-1} so that:

- $h_{i}(p)=p$;
- $h_{i} \circ f_{i+1}\left(D^{n}\right) \subseteq V_{i} ;$
- $h_{i}=h_{i-1}$ on $\bar{D}^{n}-f_{i}\left(D^{n}\right)$.

Note that h_{0} indeed satisfies the first two conditions, since $f_{1}\left(D^{n}\right) \subseteq D^{n}=V_{0}$. Since $p \in C \subseteq f_{i+1}\left(\bar{D}^{n}\right) \subseteq f_{i}\left(D^{n}\right)$, we may consider the point $p_{i}=f_{i}^{-1}(p) \in D^{n}$ and define an open neighborhood of p_{i} by

$$
U_{i}=\left(h_{i-1} \circ f_{i}\right)^{-1}\left(V_{i}\right) \cap D^{n} \subseteq D^{n}
$$

By invariance of domain, we know that $f_{i+1}\left(D^{n}\right)$ is open in D^{n}, so we use the fact that $p \in f_{i+1}\left(D^{n}\right) \subseteq f_{i}\left(D^{n}\right)$ to define another open neighborhood of p_{i} by

$$
Q_{i}=f_{i}^{-1}\left(f_{i+1}\left(D^{n}\right)\right) \subseteq D^{n}
$$

Since \bar{D}^{n} is compact, we can also see that $f_{i+1}\left(\bar{D}^{n}\right) \subseteq f_{i}\left(D^{n}\right)$ is closed in \bar{D}^{n} and thus that $f_{i}^{-1}\left(f_{i+1}\left(\bar{D}^{n}\right)\right) \subseteq D^{n}$ is closed. Then $\bar{Q}_{i} \cap \partial D^{n}=\emptyset$, because

$$
\bar{Q}_{i} \subseteq f_{i}^{-1}\left(f_{i+1}\left(\bar{D}^{n}\right)\right) \subseteq D^{n}
$$

Since $p_{i} \in U_{i} \cap Q_{i}$, Lemma 2.4 yields a homeomorphism $g_{i} \in \operatorname{Homeo}_{\partial}\left(\bar{D}^{n}\right)$ that satisfies $g_{i}\left(p_{i}\right)=p_{i}$ and $g_{i}\left(\bar{Q}_{i}\right) \subseteq U_{i}$. It follows that

$$
f_{i} \circ g_{i} \circ f_{i}^{-1}: f_{i}\left(\bar{D}^{n}\right) \rightarrow f_{i}\left(\bar{D}^{n}\right)
$$

[^5]is a homeomorphism that fixes $f_{i}\left(\partial D^{n}\right) \cup\{p\}$ pointwise. We also consider
$$
\text { Id }: \bar{D}^{n}-f_{i}\left(D^{n}\right) \rightarrow \bar{D}^{n}-f_{i}\left(D^{n}\right)
$$

Note that the two domains $f_{i}\left(\bar{D}^{n}\right)$ and $\bar{D}^{n}-f_{i}\left(D^{n}\right)$ form a closed cover of \bar{D}^{n} and that these two homeomorphisms agree on $f_{i}\left(\partial D^{n}\right)$, which is the intersection of their domains, so they glue together to give a homeomorphism $\tilde{g}_{i}: \bar{D}^{n} \rightarrow \bar{D}^{n}$. Since $f_{i}\left(\bar{D}^{n}\right) \subseteq D^{n}$, we know that \tilde{g}_{i} fixes ∂D^{n} pointwise, so $\tilde{g}_{i} \in \operatorname{Homeo}_{\partial}\left(\bar{D}^{n}\right)$. We now define $h_{i}=h_{i-1} \circ \tilde{g}_{i} \in \operatorname{Homeo}_{\partial}\left(\bar{D}^{n}\right)$. Since \tilde{g}_{i} fixes p by construction and h_{i-1} fixes p by the inductive hypothesis, we have $h_{i}(p)=p$. The fact that $h_{i}=h_{i-1}$ on $\bar{D}^{n}-f_{i}\left(D^{n}\right)$ is immediate, because $\tilde{g}_{i}=\operatorname{Id}$ on this same domain. Lastly, since $f_{i+1}\left(\bar{D}^{n}\right) \subseteq f_{i}\left(D^{n}\right)$, we have

$$
\begin{aligned}
h_{i} \circ f_{i+1}\left(D^{n}\right) & =h_{i-1} \circ \tilde{g}_{i} \circ f_{i+1}\left(D^{n}\right) \\
& =h_{i-1} \circ f_{i} \circ g_{i} \circ f_{i}^{-1} \circ f_{i+1}\left(D^{n}\right) \\
& =h_{i-1} \circ f_{i} \circ g_{i}\left(Q_{i}\right) \\
& \subseteq h_{i-1} \circ f_{i}\left(U_{i}\right) \subseteq V_{i}
\end{aligned}
$$

We have now verified the desired properties of h_{i}, completing the inductive step.
Since h_{i-1} and h_{i} are bijections $\bar{D}^{n} \rightarrow \bar{D}^{n}$, these properties imply that

$$
\begin{aligned}
h_{i} \circ f_{i}\left(D^{n}\right) & =\bar{D}^{n}-h_{i}\left(\bar{D}^{n}-f_{i}\left(D^{n}\right)\right) \\
& =\bar{D}^{n}-h_{i-1}\left(\bar{D}^{n}-f_{i}\left(D^{n}\right)\right) \\
& =h_{i-1} \circ f_{i}\left(D^{n}\right) \subseteq V_{i-1}
\end{aligned}
$$

Thus $\left\|h_{i}-h_{i-1}\right\| \leq 2^{3-i}$ on $f_{i}\left(D^{n}\right)$, because for any $x \in f_{i}\left(D^{n}\right)$, we have

$$
\left\|h_{i}(x)-h_{i-1}(x)\right\| \leq\left\|h_{i}(x)-p\right\|+\left\|h_{i-1}(x)-p\right\|<2^{2-i}+2^{2-i}=2^{3-i}
$$

But we also have $h_{i}=h_{i-1}$ on $\bar{D}^{n}-f_{i}\left(D^{n}\right)$, so the inequality $\left\|h_{i}-h_{i-1}\right\| \leq 2^{3-i}$ holds on all of \bar{D}^{n}. For any $k \in \mathbb{N}$, we then have

$$
\begin{aligned}
\left\|h_{i+k}-h_{i}\right\| & =\left\|\sum_{j=1}^{k}\left(h_{i+j}-h_{i+j-1}\right)\right\| \leq \sum_{j=1}^{k}\left\|h_{i+j}-h_{i+j-1}\right\| \\
& \leq \sum_{j=1}^{k} 2^{3-i-j}=2^{3-i}\left(1-2^{-k}\right)<2^{3-i}
\end{aligned}
$$

This shows that the sequence of maps $h_{i} \in \operatorname{Homeo}_{\partial}\left(\bar{D}^{n}\right)$ is uniformly Cauchy, so it converges to a map $f \in \operatorname{Map}_{\partial}\left(\bar{D}^{n}\right) .{ }^{8}$ It remains to show that f is surjective and that C is its only inverse set.

[^6]If $x \in \bar{D}^{n}-f_{i+1}\left(D^{n}\right)$, then $x \in \bar{D}^{n}-f_{j}\left(D^{n}\right)$ for any $j \geq i+1$, so we get

$$
h_{i}(x)=h_{i+1}(x)=\cdots=h_{j}(x)
$$

It follows that $f=h_{i}$ on $\bar{D}^{n}-f_{i+1}\left(D^{n}\right)$. But if $y \in C$, then we get $y \in f_{j+1}\left(D^{n}\right)$ and thus $h_{j}(y) \in V_{j}$ for all $j \in \mathbb{N}$. This means that $\left\|h_{j}(y)-p\right\|<2^{1-j}$ and thus

$$
f(y)=\lim _{j \rightarrow \infty} h_{j}(y)=p
$$

Hence $f(C)=\{p\}$. Given distinct points $x, y \in \bar{D}^{n}-C$, we have $x \notin f_{i+1}\left(D^{n}\right)$ and $y \notin f_{j+1}\left(D^{n}\right)$ for some $i, j \in \mathbb{N}$. If $k=\max \{i, j\}$, we have $x, y \notin f_{k+1}\left(D^{n}\right)$ and thus

$$
f(x)=h_{k}(x) \neq h_{k}(y)=f(y) \quad \text { and } \quad f(x)=h_{k}(x) \neq h_{k}(p)=p
$$

because h_{k} is injective and $x \neq p$. Thus $f^{-1}(p)=C$ and the restriction

$$
f: \bar{D}^{n}-C \rightarrow \bar{D}^{n}-p
$$

is injective, so C is the only inverse set. Given any $z \in \bar{D}^{n}-p$, we have $z \notin V_{i}$ for some $i \in \mathbb{N}$, which implies that $h_{i}^{-1}(z) \notin f_{i+1}\left(D^{n}\right)$ and thus $f \circ h_{i}^{-1}(z)=z$. This shows that f is surjective, finally completing the proof.

Since \bar{D}^{n} is compact and Hausdorff, any surjection $f \in \operatorname{Map}_{\partial}\left(\bar{D}^{n}\right)$ is closed and thus a quotient map, so this proposition implies that collapsing C to a point results in a quotient space homeomorphic to the original space \bar{D}^{n}. We can also turn this around to prove that a certain space having \bar{D}^{n} as a quotient (under a quotient map with certain specific properties) is itself homeomorphic to \bar{D}^{n} :

Lemma 3.2. Suppose that $Q \subseteq S^{n}$ is open and $f: \bar{Q} \rightarrow \bar{D}^{n}$ is a surjective map with exactly one inverse set C, such that $f(\partial Q)=\partial D^{n}$. If C is cellular in Q, then there exists a homeomorphism $h: \bar{Q} \rightarrow \bar{D}^{n}$ with $h(\partial Q)=\partial D^{n}$.

Proof. Since C is a cellular subset of Q, there exists an embedding $k: \bar{D}^{n} \rightarrow Q$ such that $C \subseteq k\left(D^{n}\right)$. Note that $k\left(D^{n}\right) \subseteq Q$ is open by invariance of domain, so C is cellular in $k\left(D^{n}\right)$ by Corollary 2.2 and hence $k^{-1}(C)$ is cellular in D^{n}. By Proposition 3.1, there exists a surjection $p \in \operatorname{Map}_{\partial}\left(\bar{D}^{n}\right)$ such that $k^{-1}(C)$ is the only inverse set under p. It follows that

$$
k \circ p \circ k^{-1}: k\left(\bar{D}^{n}\right) \rightarrow k\left(\bar{D}^{n}\right)
$$

is a surjective map that fixes $k\left(\partial D^{n}\right)$ pointwise, where C is the only inverse set. We also consider the following identity map:

$$
\operatorname{Id}: \bar{Q}-k\left(D^{n}\right) \rightarrow \bar{Q}-k\left(D^{n}\right)
$$

Notice that the two domains $k\left(\bar{D}^{n}\right)$ and $\bar{Q}-k\left(D^{n}\right)$ form a closed cover of \bar{Q} and these two maps agree on $k\left(\partial D^{n}\right)$, which is the intersection of the domains. Therefore, they glue together to define a map $q: \bar{Q} \rightarrow \bar{Q}$. It is straightforward to confirm that q is surjective and that C is the only inverse set. Notice that \bar{Q} is compact, being a closed subset of S^{n}, so q is closed and thus a quotient map. Now consider the following diagram:

Since C is the only inverse set under either f or q, the surjective map f descends to a bijective function $h: \bar{Q} \rightarrow \bar{D}^{n}$ satisfying $f=h \circ q$. But q is a quotient map, so h is continuous. Because \bar{Q} is compact, the continuous bijection $h: \bar{Q} \rightarrow \bar{D}^{n}$ is a homeomorphism. Since Q is open in S^{n}, we have

$$
\partial Q=\bar{Q}-Q \subseteq \bar{Q}-k\left(D^{n}\right)
$$

Thus q restricts to the identity on ∂Q, so $h(\partial Q)=f(\partial Q)=\partial D^{n}$.
We conclude this section with one more technical lemma regarding quotient maps like those in Proposition 3.1, which will be needed in our ultimate proof:

Lemma 3.3. If Z is a T_{4} space (normal and Hausdorff) and $A \subseteq Z$ is closed, then the quotient space Z / A (given by collapsing A to a point) is also T_{4}.

Proof. Let $p: Z \rightarrow Z / A$ denote the quotient map. Every point in Z / A is closed, because every fiber of the quotient map p is closed. Notice that a set $B \subseteq Z$ is saturated with respect to p if and only if $A \subseteq B$ or $A \cap B=\emptyset$. Consider disjoint closed sets $K_{1}, K_{2} \subseteq Z / A$. Then $p^{-1}\left(K_{1}\right), p^{-1}\left(K_{2}\right) \subseteq Z$ are closed, disjoint and saturated. Since Z is normal, there exist disjoint open sets $U_{1}, U_{2} \subseteq Z$ separating $p^{-1}\left(K_{1}\right)$ and $p^{-1}\left(K_{2}\right)$. For $i=1$ or 2 , we now define

$$
V_{i}=\left\{\begin{array}{cc}
U_{i}-A, & A \cap p^{-1}\left(K_{i}\right)=\emptyset \\
U_{i}, & A \subseteq p^{-1}\left(K_{i}\right)
\end{array}\right.
$$

Then V_{i} is an open neighborhood of $p^{-1}\left(K_{i}\right)$, satisfying $A \subseteq V_{i}$ or $A \cap V_{i}=\emptyset$. We also have $V_{1} \cap V_{2} \subseteq U_{1} \cap U_{2}=\emptyset$, so V_{1} and V_{2} are saturated, disjoint open sets in Z separating $p^{-1}\left(K_{1}\right)$ and $p^{-1}\left(K_{2}\right)$. It follows that $p\left(V_{1}\right)$ and $p\left(V_{2}\right)$ are disjoint open sets in Z / A separating K_{1} and K_{2}, as desired.

4 Detecting Cellularity

To apply Lemma 3.2, we will need to be able to identify certain cellular subsets of the sphere. First, we prove a small lemma on the connectivity of manifolds:

Lemma 4.1. Let X be a connected n-manifold with $n>1$. If $P \subseteq X$ is finite, then the complement $X-P$ is also connected.

Proof. Since points in X are closed, ${ }^{9}$ deleting any finite set of points results in an open subset of X, which is also an n-manifold. As such, we may proceed by induction and assume that $P=\{p\}$ is a singleton. If $X=D^{n}$, then Lemma 2.3 yields a homeomorphism $\psi: D^{n} \rightarrow X$ with $\psi(0)=p$. Since $D^{n}-0$ is connected (being homeomorphic to $S^{n-1} \times(0,1]$), it follows that $X-p$ is connected.

In general, suppose for the sake of contradiction that $X-p$ is disconnected. Then we can write $X-p=V \sqcup W$, where the sets V and W are open in $X-p$ and thus in X. Since X is an n-manifold, there is an open neighborhood $U \ni p$ homeomorphic to D^{n}. Then $U-p$ is connected, by the case considered above, so it must lie entirely in either V or W. But if $U-p \subseteq V$, then $U \cup V=\{p\} \sqcup V$ is open in X, so the connectedness of X is contradicted by the decomposition

$$
X=(\{p\} \sqcup V) \sqcup W .
$$

If $U-p \subseteq W$, we get an analogous contradiction. Thus $X-p$ is connected.
With this lemma in hand, we can now proceed to the meat of this section, which is an amalgam of Theorem 0 in [B] and Lemma 4.2 in [P].

Lemma 4.2. Suppose $f: \bar{D}^{n} \rightarrow S^{n}$ is a map with finitely many inverse sets, all of which lie in D^{n}. Denote these inverse sets by C_{1}, \ldots, C_{k} and let $c_{i} \in S^{n}$ denote the point with $C_{i}=f^{-1}\left(c_{i}\right)$. Then we have:
(a) $f\left(D^{n}\right)$ is a connected component of $S^{n}-f\left(\partial D^{n}\right)$, which we denote by E.
(b) Let $I=C_{1} \cup \cdots \cup C_{k}=\left\{p \in \bar{D}^{n}: f^{-1}(f(p))\right.$ contains multiple points $\}$. Then f restricts to a quotient map $f: D^{n} \rightarrow E$ and to a homeomorphism

$$
f: D^{n}-I \longrightarrow E-\left\{c_{1}, \ldots, c_{k}\right\}
$$

(c) If $U \subseteq D^{n}$ is an open set that contains C_{k} and is disjoint from $I-C_{k}$, then there exists a map $g: \bar{D}^{n} \rightarrow U$ that restricts to the identity on C_{k} and whose inverse sets are precisely C_{1}, \ldots, C_{k-1}.

[^7](d) The sets C_{1}, \ldots, C_{k} are each cellular in D^{n}.

Proof. (a) Since all of the inverse sets of f lie in D^{n}, we can see that $\left.f\right|_{\partial D^{n}}$ is injective and $f\left(D^{n}\right) \cap f\left(\partial D^{n}\right)=\emptyset$. Since ∂D^{n} is homeomorphic to S^{n-1}, the complement $S^{n}-f\left(\partial D^{n}\right)$ has two connected components, each with boundary $f\left(\partial D^{n}\right)$. Because $f\left(D^{n}\right)$ is connected and disjoint from $f\left(\partial D^{n}\right)$, it must lie in one of these connected components, which we call E. To prove the assertion that $f\left(D^{n}\right)=E$, it remains to show that $E-f\left(D^{n}\right)=\emptyset$.
Note that $I=C_{1} \cup \cdots \cup C_{k}$ is closed, so $D^{n}-I$ is open in D^{n} and thus is an n-manifold. Since f is injective on $D^{n}-I$, invariance of domain implies that $f\left(D^{n}-I\right)$ is open in S^{n}. Since $E \cap f\left(\partial D^{n}\right)=\emptyset$, we have

$$
E-f\left(\bar{D}^{n}\right)=E-f\left(D^{n}\right)
$$

Thus $E-f\left(D^{n}\right)$ is open in E (because $f\left(\bar{D}^{n}\right)$ is closed in $\left.S^{n}\right)$. Therefore

$$
E-f(I)=\left(E-f\left(D^{n}\right)\right) \sqcup f\left(D^{n}-I\right)
$$

is a partition of $E-f(I)$ into two open sets. But $f(I)$ is finite and $E \subseteq S^{n}$ is open and connected, so $E-f(I)$ is connected by Lemma 4.1. Therefore, either $E-f\left(D^{n}\right)=\emptyset$ or $f\left(D^{n}-I\right)=\emptyset$. But if we have $f\left(D^{n}-I\right)=\emptyset$, then $f\left(D^{n}\right)=f(I)$ is finite and therefore closed in S^{n}, which means that

$$
f\left(\bar{D}^{n}\right)=f\left(D^{n}\right) \sqcup f\left(\partial D^{n}\right)
$$

is a partition of $f\left(\bar{D}^{n}\right)$ into nonempty closed sets. But this contradicts the connectedness of \bar{D}^{n}. Instead, we must have $E-f\left(D^{n}\right)=\emptyset$, as desired.
(b) Since \bar{D}^{n} is compact and S^{n} is Hausdorff, we can see that $f: \bar{D}^{n} \rightarrow f\left(\bar{D}^{n}\right)$ is closed and thus is a quotient map. Note that D^{n} and $D^{n}-I$ are both open and saturated (the former contains every inverse set, while the latter is disjoint from every inverse set), so the restrictions

$$
f: D^{n} \longrightarrow f\left(D^{n}\right) \quad \text { and } \quad f: D^{n}-I \longrightarrow f\left(D^{n}-I\right)
$$

are both quotient maps. ${ }^{10}$ We know that $f\left(D^{n}\right)=E$ and it follows that

$$
f\left(D^{n}-I\right)=E-\left\{c_{1}, \ldots, c_{k}\right\}
$$

Since $D^{n}-I$ is disjoint from every inverse set of f, the restriction

$$
f: D^{n}-I \rightarrow E-\left\{c_{1}, \ldots, c_{k}\right\}
$$

is an injective quotient map and therefore a homeomorphism.

[^8](c) Since U contains C_{k} and is disjoint from every other inverse set, we can see that U is saturated with respect to f. By part (b), it follows that $f(U)$ is open in E and thus in S^{n}. We also have $\bar{E} \neq S^{n}$ and
$$
c_{k} \in f(U) \subseteq E-\left\{c_{1}, \ldots, c_{k-1}\right\} \subseteq E
$$
so Corollary 2.5 yields a homeomorphism $\varphi: S^{n} \rightarrow S^{n}$ with $\varphi(\bar{E}) \subseteq f(U)$, which restricts to the identity on an open set $W \subseteq S^{n}$ that contains c_{k}. Since $f\left(\bar{D}^{n}\right) \subseteq \bar{E}$ (by part (a) and the continuity of f) and $\varphi\left(c_{k}\right)=c_{k}$, we can see that
$$
\varphi \circ f\left(\bar{D}^{n}-C_{k}\right) \subseteq \varphi\left(\bar{E}-\left\{c_{k}\right\}\right) \subseteq f(U)-\left\{c_{k}\right\} \subseteq E-\left\{c_{1}, \ldots, c_{k}\right\}
$$

By part (b), we then get a well-defined, injective map

$$
f^{-1} \circ \varphi \circ f: \bar{D}^{n}-C_{k} \rightarrow D^{n}-I
$$

We also consider the following identity map:

$$
\operatorname{Id}: f^{-1}(W) \rightarrow f^{-1}(W)
$$

Because $c_{k} \in W$ and φ restricts to the identity on W, the two domains $\bar{D}^{n}-C_{k}$ and $f^{-1}(W)$ form an open cover of \bar{D}^{n} and these two maps agree on the intersection of their domains. Therefore, they glue together to define a map $g: \bar{D}^{n} \rightarrow S^{n}$. Because $C_{k} \subseteq f^{-1}(W)$, the map g clearly restricts to the identity on C_{k}, so $g\left(C_{k}\right)=C_{k} \subseteq U$. Since U is saturated with respect to f, we also have

$$
g\left(\bar{D}^{n}-C_{k}\right)=f^{-1} \circ \varphi \circ f\left(\bar{D}^{n}-C_{k}\right) \subseteq f^{-1}(f(U))=U
$$

Thus $g\left(\bar{D}^{n}\right) \subseteq U$. It remains to determine the inverse sets of g. Note that

$$
g\left(\bar{D}^{n}-C_{k}\right) \subseteq D^{n}-I \subseteq D^{n}-C_{k}
$$

Thus if $x \in C_{k}$, then $g^{-1}(x) \subseteq C_{k}$ and hence $g^{-1}(g(x))=g^{-1}(x)=\{x\}$. Therefore, C_{k} does not intersect any inverse sets of g. In the composition

$$
f^{-1} \circ \varphi \circ f: \bar{D}^{n}-C_{k} \rightarrow D^{n}-I,
$$

the maps f^{-1} and φ are both homeomorphisms, so the inverse sets of g are just the intersections of $\bar{D}^{n}-C_{k}$ with the inverse sets of f. Therefore, the inverse sets of g are precisely C_{1}, \ldots, C_{k-1}.
(d) The claim is vacuous if $k=0$, so we first assume that $k=1$. Then $I=C_{1}$, so for any open set $U \subseteq D^{n}$ containing C_{1}, part (c) shows that there exists a map $g: \bar{D}^{n} \rightarrow U$ that restricts to the identity on C_{1} and has no inverse sets. Thus g is injective and $C_{1}=g\left(C_{1}\right) \subseteq g\left(D^{n}\right)$, so C_{1} is cellular in D^{n}.
For $k>1$, we proceed by induction. Letting $U=D^{n}-\left(C_{1} \cup \ldots C_{k-1}\right)$, we may apply part (c) to get a map $g: \bar{D}^{n} \rightarrow U$ whose inverse sets are precisely C_{1}, \ldots, C_{k-1}. Fix some embedding $h: D^{n} \rightarrow S^{n}$. Then the map $h \circ g: \bar{D}^{n} \rightarrow S^{n}$ has inverse sets $C_{1}, \ldots, C_{k-1} \subseteq D^{n}$. By induction on k, we see that C_{1}, \ldots, C_{k-1} are each cellular in D^{n}. Swapping C_{1} and C_{k}, the same argument shows that C_{k} is cellular in D^{n}.

To conclude this section, we provide a slight rephrasing of a specific case of Lemma $4.2(\mathrm{~d})$ that will be most relevant in our usage:

Lemma 4.3. If $g: S^{n} \rightarrow S^{n}$ is a map with exactly two inverse sets B and C, then B and C are both cellular in S^{n}.

Proof. Since B and C are both closed, the complement $S^{n}-(B \cup C)$ is open and non-empty (having $S^{n}=B \sqcup C$ would contradict the connectedness of S^{n}). Hence, we can find a standard (see footnote 1) open disk $V \subseteq S^{n}$ such that

$$
\bar{V} \subseteq S^{n}-(B \cup C)
$$

The complementary region $E=S^{n}-\bar{V}$ is an open set containing B and C, which admits a homeomorphism $h: \bar{D}^{n} \rightarrow \bar{E}$ with $h\left(D^{n}\right)=E$. Then the map

$$
g \circ h: \bar{D}^{n} \rightarrow S^{n}
$$

has precisely two inverse sets, $h^{-1}(B)$ and $h^{-1}(C)$, both of which lie in D^{n}. Hence, Lemma 4.2(d) implies that $h^{-1}(B)$ and $h^{-1}(C)$ are both cellular in D^{n}, so B and C are both cellular in E and therefore in S^{n}.

5 Detecting Disks

We can now combine the tools that we have accumulated into a proof of the generalized Schoenflies theorem. Consider an embedding $g: S^{n-1} \times[0,1] \rightarrow S^{n}$. For brevity, given any subset $R \subseteq[0,1]$, we will write

$$
S_{R}^{n-1}=g\left(S^{n-1} \times R\right)
$$

Notice that if R is connected and $t \notin R$, then S_{R}^{n-1} is connected and therefore is contained in whichever component of $S^{n}-S_{t}^{n-1}$ it intersects. The main result that we will prove is:

Theorem 5.1 (Generalized Schoenflies Theorem). Let Q denote the connected component of $S^{n}-S_{1}^{n-1}$ that contains the connected set S_{0}^{n-1}. Then there exists a homeomorpism $h: \bar{Q} \rightarrow \bar{D}^{n}$ with $h(\partial Q)=\partial D^{n}$.

Proof. In the course of the proof, we will need to name a couple other key subsets of the sphere. Let P denote the other connected component of $S^{n}-S_{1}^{n-1}$ (the one not containing S_{0}^{n-1}) and let C denote the connected component of $S^{n}-S_{1 / 2}^{n-1}$ not containing S_{1}^{n-1}. We next prove one last lemma:
Lemma 5.2. The sets that we have defined satisfy the following relationships: ${ }^{11}$
(a) $S_{0}^{n-1} \subseteq C$

Proof. If not, then the component of $S^{n}-S_{1 / 2}^{n-1}$ containing S_{1}^{n-1} must also contain S_{0}^{n-1} and therefore must contain $S_{\left[0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, 1\right]}^{n-1}$. It follows that $C \subseteq S^{n}-S_{1 / 2}^{n-1}$ is disjoint from $S_{(0,1)}^{n-1}$, which is a neighborhood of $S_{1 / 2}^{n-1}$ by invariance of domain. But this contradicts the fact that $S_{1 / 2}^{n-1}=\partial C$.
(b) $\bar{C} \subseteq Q$

Proof. The closure $\bar{C}=C \cup S_{1 / 2}^{n-1}$ is connected and disjoint from S_{1}^{n-1}, so \bar{C} lies in one of the connected components of $S^{n}-S_{1}^{n-1}$. But we know that S_{0}^{n-1} is a subset of both Q and \bar{C}, so we must have $\bar{C} \subseteq Q$.
(c) $\bar{C} \cap S_{[0,1]}^{n-1}=S_{\left[0, \frac{1}{2}\right]}^{n-1}$

Proof. The containment $S_{\left[0, \frac{1}{2}\right)}^{n-1} \subseteq C$ follows from $S_{0}^{n-1} \subseteq C$. The fact that $S_{\left[\frac{1}{2}, 1\right]}^{n-1}$ and C are disjoint follows from the definition of C as the component of $S^{n}-S_{1 / 2}^{n-1}$ not containing S_{1}^{n-1}. This implies that $C \cap S_{[0,1]}^{n-1}=S_{\left[0, \frac{1}{2}\right)}^{n-1}$ and therefore that

$$
\bar{C} \cap S_{[0,1]}^{n-1}=\left(C \cup S_{1 / 2}^{n-1}\right) \cap S_{[0,1]}^{n-1}=S_{\left[0, \frac{1}{2}\right)}^{n-1} \cup S_{1 / 2}^{n-1}=S_{\left[0, \frac{1}{2}\right]}^{n-1}
$$

(d) $\bar{P} \cap S_{[0,1]}^{n-1}=S_{1}^{n-1}$

Proof. Since P and Q are the components of $S^{n}-S_{1}^{n-1}$, we have

$$
S^{n}=P \sqcup Q \sqcup S_{1}^{n-1}
$$

By assumption, we have $S_{0}^{n-1} \subseteq Q$ and thus $S_{[0,1)}^{n-1} \subseteq Q$. This implies that P and $S_{[0,1]}^{n-1}$ are disjoint, so we get

$$
\bar{P} \cap S_{[0,1]}^{n-1}=\left(P \cup S_{1}^{n-1}\right) \cap S_{[0,1]}^{n-1}=S_{1}^{n-1}
$$

[^9](e) $Q=\bar{C} \cup S_{[0,1)}^{n-1}$

Proof. Since Q is connected and it contains the set $\bar{C} \cup S_{[0,1)}^{n-1}$ by part (b), we need only show that this set is clopen in Q. The set

$$
Q \cap\left(\bar{C} \cup S_{[0,1]}^{n-1}\right)=\bar{C} \cup S_{[0,1)}^{n-1}
$$

is certainly closed in Q. Since $S_{0}^{n-1} \subseteq C$ and $\bar{C}=C \cup S_{1 / 2}^{n-1}$, we also have

$$
C \cup S_{(0,1)}^{n-1}=\bar{C} \cup S_{[0,1)}^{n-1}
$$

This set is open in S^{n} and thus in Q, since $S_{(0,1)}^{n-1}$ and C are open in S^{n}.
We now define several maps that are organized into a commutative diagram:

The maps π_{1}, π_{2}, q_{1} and q_{2} are each quotient maps given by collapsing a closed set to a point: π_{1} collapses $S^{n-1} \times\left[0, \frac{1}{2}\right]$ and π_{2} collapses $\partial D^{n}=\pi_{1}\left(S^{n-1} \times 1\right)$; q_{1} collapses \bar{C} and q_{2} further collapses $q_{1}(\bar{P})$. The maps h_{1} and h_{2} are injections descending from g, which exist by parts (c) and (d) of Lemma 5.2. For brevity, we also write $q=q_{2} \circ q_{1}$. Note also that the quotient spaces X and Y are both Hausdorff by Lemma 3.3.

Notice that Lemma 5.2(e) implies that $\bar{Q}=Q \cup S_{1}^{n-1}=\bar{C} \cup S_{[0,1]}^{n-1}$. Since q_{1} collapses \bar{C} to a point and $\bar{C} \cap S_{[0,1]}^{n-1} \neq \emptyset$, we have $q_{1}(\bar{C}) \subseteq q_{1}\left(S_{[0,1]}^{n-1}\right)$ and thus

$$
\begin{aligned}
q_{1}(\bar{Q}) & =q_{1}(\bar{C}) \cup q_{1}\left(S_{[0,1]}^{n-1}\right) \\
& =q_{1}\left(S_{[0,1]}^{n-1}\right)=q_{1} \circ g\left(S^{n-1} \times[0,1]\right) \\
& =h_{1} \circ \pi_{1}\left(S^{n-1} \times[0,1]\right)=h_{1}\left(\bar{D}^{n}\right)
\end{aligned}
$$

Since q collapses \bar{P} to a point and $\bar{P} \cap \bar{Q} \neq \emptyset$, we similarly have $q(\bar{P}) \subseteq q(\bar{Q})$. Combining this with $\bar{P} \cup \bar{Q}=S^{n}$ and the previous observation, we can see that

$$
\begin{aligned}
Y & =q\left(S^{n}\right)=q(\bar{P}) \cup q(\bar{Q})=q(\bar{Q}) \\
& =q_{2} \circ q_{1}(\bar{Q})=q_{2} \circ h_{1}\left(\bar{D}^{n}\right) \\
& =h_{2} \circ \pi_{2}\left(\bar{D}^{n}\right)=h_{2}\left(S^{n}\right) .
\end{aligned}
$$

Thus h_{2} is a bijection, while h_{1} is an injection with image $q_{1}(\bar{Q})$.
Since \bar{D}^{n} and S^{n} are compact, while X and Y are Hausdorff, it follows that h_{2} is a homeomorphism and h_{1} is an embedding onto $q_{1}(\bar{Q})$. Hence, the map

$$
h_{2}^{-1} \circ q: S^{n} \rightarrow S^{n}
$$

is well-defined and has exactly two inverse sets: \bar{C} and $\bar{P} .{ }^{12}$ Lemmas 4.3 and 2.2 then imply that \bar{C} is cellular in S^{n} and thus in Q. We also consider the map

$$
f=h_{1}^{-1} \circ q_{1}: \bar{Q} \rightarrow \bar{D}^{n}
$$

Since $h_{1}: \bar{D}^{n} \rightarrow q_{1}(\bar{Q})$ is a homeomorphism, this map is well-defined, surjective, and has exactly one inverse set \bar{C} (because $\bar{C} \subseteq Q$). Notice also that

$$
\begin{aligned}
f(\partial Q) & =f\left(S_{1}^{n-1}\right)=f \circ g\left(S^{n-1} \times 1\right) \\
& =h_{1}^{-1} \circ q_{1} \circ g\left(S^{n-1} \times 1\right) \\
& =\pi_{1}\left(S^{n-1} \times 1\right)=\partial D^{n}
\end{aligned}
$$

Thus, the desired homeomorphism $h: \bar{Q} \rightarrow \bar{D}^{n}$ is guaranteed by Lemma 3.2.

References

[B] Morton Brown. "A proof of the generalized Schoenflies theorem." Bulletin of the American Mathematical Society 66 (1960), 74-76.
[H] Allen Hatcher. Algebraic Topology. Cambridge UP, Cambridge, 2002.
[M] James R. Munkres. Topology. Second edition. Prentice Hall, Inc., NJ, 2000.
[P] Andrew Putman. "The generalized Schoenflies theorem." Expository note. https://www3.nd.edu/~andyp/notes/Schoenflies.pdf
[S] Reinhard Schultz. "Comments on the Jordan-Brouwer Separation Theorem." Note for Math 246A at UC Riverside, Winter 2007.
https://math.ucr.edu/~res/math246A/winter07/jbsep.pdf

[^10]
[^0]: ${ }^{1}$ By this, we mean a metric ball in S^{n-1} (of radius less than 2), using the standard metric inherited by viewing $S^{n-1} \subseteq \mathbb{R}^{n}$ as the unit sphere. These balls form a base for the metric topology on S^{n-1}, which is how we can guarantee the existence of V.

[^1]: ${ }^{2}$ It might be more appropriate to call such spaces locally Euclidean and reserve the title of manifold for those that are Hausdorff and second-countable, but the result of Proposition 1.4 does not actually require either of these assumptions.

[^2]: ${ }^{3}$ Here, we are viewing $\bar{D}^{n} \subseteq \mathbb{R}^{n}$ as the closed unit ball under the usual norm $\|\cdot\|$ on \mathbb{R}^{n} and $S^{n-1}=\partial D^{n} \subseteq \mathbb{R}^{n}$ as the unit sphere.

[^3]: ${ }^{4}$ In this proof, we write ν instead of $\|\cdot\|$, so that it is easier to notate inverse images.

[^4]: ${ }^{5}$ Since π is surjective, we have $\pi\left(Q_{0}\right)=\pi\left(\pi^{-1}(Q)\right)=Q$ and thus $\pi\left(\bar{Q}_{0}\right) \subseteq \bar{Q}$, by continuity. Conversely, we have $Q=\pi\left(Q_{0}\right) \subseteq \pi\left(\bar{Q}_{0}\right)$ and thus $\bar{Q} \subseteq \pi\left(\bar{Q}_{0}\right)$. This shows that $\pi\left(\bar{Q}_{0}\right)=\bar{Q}$.
 ${ }^{6}$ If $V_{0} \subseteq D^{n}$ is a neighborhood of p_{0} on which φ_{0} restricts to the identity, then φ restricts to the identity on $\pi\left(V_{0}\right) \subseteq S^{n}$, which is open because V_{0} is saturated with respect to π.

[^5]: ${ }^{7}$ It turns out that every $f \in \operatorname{Map}_{\partial}\left(\bar{D}^{n}\right)$ is surjective, but proving this requires homology, so we avoid it here. The gist of the proof is as follows: If $p \notin f\left(\bar{D}^{n}\right)$, we can describe a retract

 $$
 g: \bar{D}^{n}-p \rightarrow \partial D^{n} .
 $$

 Then we get a retract $g \circ f: \bar{D}^{n} \rightarrow \partial D^{n}$, but no such map exists (see Corollary 2.15 in [H]).

[^6]: ${ }^{8}$ Since each $h_{i} \in \operatorname{Homeo}_{\partial}\left(\bar{D}^{n}\right)$ fixes ∂D^{n} pointwise, the same is true of their limit f.

[^7]: ${ }^{9}$ Even with our weak definition of manifolds, points are always closed. A proof of this fact is left as an exercise for the reader, since this lemma will only be used in situations where X is clearly Hausdorff.

[^8]: ${ }^{10}$ If $q: X \rightarrow Y$ is any quotient map and $U \subseteq X$ is open and saturated, then the restriction $q: U \rightarrow q(U)$ is again a quotient map (see Theorem 22.1 in [M]).

[^9]: ${ }^{11}$ To not get bogged down in the details, it may help to skip the proofs of these assertions, at least on a first pass.

[^10]: ${ }^{12}$ This uses the fact that $\bar{C} \cap \bar{P}=\emptyset$, which is an immediate consequence of Lemma 5.2(b).

