Consider a submersion $f: M \to N$. The vertical distribution of f is the sub-bundle

$$V = \ker(Df) \subseteq TM.$$

A horizontal distribution is any sub-bundle $H \subseteq TM$ complementary to V, which means that $V \oplus H = TM$ (such a sub-bundle always exists; for example, if we put a Riemannian metric on M, we can set $H = V^{\perp}$). The restricted tangent mapping depicted below is a fiberwise isomorphism:

Thus any vector field $X \in \mathfrak{X}(N)$ has a unique horizontal lift, i.e. a vector field $\widetilde{X} \in \mathfrak{X}(M)$ that is everywhere tangent to H and f-related to X. We will use this lifting property to prove the following theorem:

Theorem. For any $x \in M$, let F_x denote the connected component of $f^{-1}(f(x))$. For any $x \in M$ such that F_x is compact, there exists a open set $U \ni f(x)$ and an open embedding $\Phi : U \times F_x \to M$, which satisfies:

- $f \circ \Phi(c, y) = c$ for all $c \in U$ and $y \in F_x$;
- $\Phi(f(x), y) = y$ for all $y \in F_x$.

In other words, the map Φ is a local trivialization that restricts to the inclusion of F_x over the point f(x).

Proof. If U is a chart on N that contains f(x), we may restrict our view to the map $f : f^{-1}(U) \to U$ without loss of generality. As such, we may assume that $N = \mathbb{R}^n$ and f(x) = 0. For each $i = 1, \ldots, n$, let X_i denote the horizontal lift of $\partial/\partial x_i$. Each X_i admits a maximal flow domain $\mathcal{D}_i \subseteq M \times \mathbb{R}$ and a flow $\psi_i : \mathcal{D}_i \to M$. We will inductively define neighborhoods $U_i \subseteq \mathbb{R}^i$ of the origin and immersions $\Phi_i : U_i \times F_x \to M$ such that:

- $f \circ \Phi_i(c, y) = j_i(c)$ for all $c \in U_i$ and $y \in F_x$, where $j_i : \mathbb{R}^i \to \mathbb{R}^n$ is inclusion in the first *i* coordinates;
- $\Phi_i(0_i, y) = y$ for all $y \in F_x$, where 0_i denotes the origin in \mathbb{R}^i .

Then setting $U = U_n$ and $\Phi = \Phi_n$ will complete the proof. Indeed, the desired properties of Φ follow immediately from the corresponding properties of Φ_n . In particular, the fact that Φ is an open embedding follows from the fact that Φ_n is an immersion and the following "rank-nullity" calculation:

$$\dim(U \times F_x) = \dim U + \dim F_x = \dim N + \dim f^{-1}(x) = \dim M.$$

First, we define $\Phi_0: F_x \to M$ to be the inclusion map. This clearly satisfies all of the desired conditions. Now fix i < n and suppose that we have constructed U_i and Φ_i with the desired properties. Define a map

$$\iota: U_i \times \mathbb{R} \times F_x \to M \times \mathbb{R}$$
 by $\iota(t_1, \dots, t_n, t, y) = (\Phi_i(t_1, \dots, t_n, y), t).$

If we write $\mathscr{E} = \iota^{-1}(\mathscr{D}_{i+1})$, then \mathscr{E} is open in $U_i \times \mathbb{R} \times F_x$ and thus in $\mathbb{R}^{i+1} \times F_x$. For any $y \in F_x$, we have

$$\iota(0_i, 0, y) = (\Phi_i(0_i, y), 0) = (y, 0) \in \mathscr{D}_{i+1}$$

by our second assumption on Φ_i and the definition of a flow domain, so \mathscr{E} is a neighborhood of $\{0_{i+1}\} \times F_x$. Since $\iota(\mathscr{E}) \subseteq \mathscr{D}_{i+1}$, we let the map $\Phi_{i+1} : \mathscr{E} \to M$ be defined by $\Phi_{i+1} = \psi_{i+1} \circ \iota$. More explicitly, we have

$$\Phi_{i+1}(t_1,\ldots,t_i,t_{i+1},y) = \psi_{i+1}(\Phi_i(t_1,\ldots,t_i,y),t_{i+1})$$

Because the vector fields X_{i+1} and $\partial/\partial x_{i+1}$ are *f*-related, we can observe that $f \circ \psi_{i+1}(z,t) = f(z) + te_{i+1}$ for any $(z,t) \in \mathcal{D}_{i+1}$. Combining this with our first assumption on Φ_i , we get

$$f \circ \Phi_{i+1}(t_1, \dots, t_i, t_{i+1}, y) = f \circ \psi_{i+1} \left(\Phi_i(t_1, \dots, t_i, y), t_{i+1} \right)$$

= $f \circ \Phi_i(t_1, \dots, t_i, y) + t_{i+1}e_{i+1}$
= $g_i(t_1, \dots, t_i) + t_{i+1}e_{i+1}$
= $g_{i+1}(t_1, \dots, t_i, t_{i+1}).$

Since j_{i+1} is obviously an immersion, this equality implies that $D\Phi_{i+1}$ cannot annihilate any vectors tangent to a slice $\mathscr{E} \cap (\mathbb{R}^{i+1} \times \{y\})$ (where $y \in F_x$ is arbitrary). Using the second assumption on Φ_i , we also have

$$\Phi_{i+1}(0_{i+1}, y) = \psi_{i+1}(\Phi_i(0_i, y), 0) = \psi_{i+1}(y, 0) = y.$$

In particular, this fact implies that $D\Phi_{i+1}$ cannot annihilate any vectors tangent to the slice $\{0_{i+1}\} \times F_x$. Combining this with the above observation, we now see that $D\Phi_{i+1}$ is injective at any point in $\{0_{i+1}\} \times F_x$. The rank of a smooth map is lower semi-continuous, so there is an open set $W \subseteq \mathscr{E}$ containing $\{0_{i+1}\} \times F_x$ on which Φ_{i+1} is an immersion. Since F_x is compact, there is some neighborhood $U_{i+1} \subseteq \mathbb{R}^{i+1}$ of the origin with $U_{i+1} \times F_x \subseteq W$.¹ This completes the inductive step and thus completes the proof of the theorem. \Box

Corollary. The set $\{x \in M : F_x \text{ is compact}\}$ is open in M.

Proof. Suppose that F_x is compact and let $\Phi: U \times F_x \to M$ be as in the above theorem. Then $\Phi(U \times F_x)$ is open in M and we will show that F_y is compact for any $y \in \Phi(U \times F_x)$. Suppose $y = \Phi(u, z)$ with $u \in U$ and $z \in F_x$. Then $S = \Phi(\{u\} \times F_x)$ is a compact, connected submanifold of M satisfying $y \in S \subseteq f^{-1}(u)$. Because f is a submersion, all of its fibers have the same dimension and thus

$$\dim S = \dim F_x = \dim f^{-1}(f(x)) = \dim f^{-1}(u).$$

Since $S \subseteq f^{-1}(u)$ is a full-dimensional submanifold, it is open in $f^{-1}(u)$. But we also know that S is compact and connected, so it must be a connected component of $f^{-1}(u) = f^{-1}(f(y))$. But $y \in S$, so we get $F_y = S$, from which we can immediately conclude that F_y is compact.

¹If X is compact and $p \in Y$, then any open set $W \subseteq X \times Y$ containing $X \times \{p\}$ must also contain a set of the form $X \times U$, where $U \subseteq Y$ is an open set containing p. The proof is a straightforward application of the common "union/intersection trick" that is applied to prove various point-set-topological properties involving compactness (e.g. compact Hausdorff \Longrightarrow regular).