The Local Version of Ehresmann’s Theorem

Consider a submersion f: M — N. The vertical distribution of f is the sub-bundle
V =ker(Df) CTM.

A horizontal distribution is any sub-bundle H C T'M complementary to V, which means that V& H = TM
(such a sub-bundle always exists; for example, if we put a Riemannian metric on M, we can set H = V7).

The restricted tangent mapping depicted below is a fiberwise isomorphism:
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Thus any vector field X € X(N) has a unique horizontal lift, i.e. a vector field X € X(M) that is everywhere
tangent to H and f-related to X. We will use this lifting property to prove the following theorem:

Theorem. For any = € M, let F,, denote the connected component of f~! ( f (x)) For any = € M such that
F, is compact, there exists a open set U 3 f(x) and an open embedding ® : U x F,, — M, which satisfies:

o fod(c,y)=clorallceU and y € Fy;
o O(f(x),y) =y forallye F,.
In other words, the map @ is a local trivialization that restricts to the inclusion of F, over the point f(x).

Proof. If U is a chart on N that contains f(x), we may restrict our view to the map f : f~*(U) — U without
loss of generality. As such, we may assume that N = R™ and f(z) = 0. For each i = 1,...,n, let X; denote
the horizontal lift of 8/0x;. Each X; admits a maximal flow domain 9; C M x R and a flow ¢; : 9; — M.
We will inductively define neighborhoods U; C R? of the origin and immersions ®; : U; x F,, — M such that:

e fod;(c,y) = y(c) for all ¢ € U; and y € F,, where 7; : R — R™ is inclusion in the first i coordinates;
o P, (Oi, y) =y for all y € F,, where 0; denotes the origin in R’

Then setting U = U, and & = &,, will complete the proof. Indeed, the desired properties of ® follow
immediately from the corresponding propeties of ®,. In particular, the fact that ® is an open embedding

follows from the fact that ®,, is an immersion and the following “rank-nullity” calculation:
dim(U x F,) = dimU 4 dim F, = dim N 4 dim f~(x) = dim M.

First, we define ® : F,, — M to be the inclusion map. This clearly satisfies all of the desired conditions.

Now fix ¢ < n and suppose that we have constructed U; and ®; with the desired properties. Define a map
LU xRxFy, = MxR by tr,...,th,t,y) = ((I)i(tl,...,tn,y),t).
If we write & = t71(Z;41), then & is open in U; x R x F, and thus in R‘*! x F,. For any y € F,, we have
1(04,0,y) = (®:(05,9),0) = (y,0) € Zi11

by our second assumption on ®; and the definition of a flow domain, so & is a neighborhood of {0;41} x Fi.
Since ¢(&) C P11, we let the map ®,11 : & — M be defined by ®;11 = 1,41 o t. More explicitly, we have

D1 (ty, .o tistizn, y) = Yigr (Palte, .o t6,y) tiv1).
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Because the vector fields X;11 and 0/0x;+1 are f-related, we can observe that f o, 11(z,t) = f(2) + te;1
for any (z,t) € Z;+1. Combining this with our first assumption on ®;, we get

fo®ipi(ty, .. titiv1,y) = fowipr (Pilte, ..., ti,y), tiv1)
= fo®i(t1,... . ti,y) +tit1eip1
=i(t1, ..., t;) + tiv1€i11
= ]i+1(t1, . ,ti,t,;_,_l).

Since j;4+1 is obviously an immersion, this equality implies that D®;; cannot annihilate any vectors tangent
to a slice & N (R x {y}) (where y € F, is arbitrary). Using the second assumption on ®;, we also have

Di11(0i41,y) = Vig1(Pi(0,y),0) = Yiy1(y,0) = y.

In particular, this fact implies that D®;,; cannot annihilate any vectors tangent to the slice {0;41} X Fj.
Combining this with the above observation, we now see that D®; 1 is injective at any point in {0;41} x F.
The rank of a smooth map is lower semi-continuous, so there is an open set W C & containing {0;41} X F;
on which ®;, is an immersion. Since F, is compact, there is some neighborhood U; ;1 C R¥*+! of the origin

with U; 1 x F, C W.! This completes the inductive step and thus completes the proof of the theorem. [
Corollary. The set {z € M : F,, is compact} is open in M.

Proof. Suppose that F, is compact and let ® : U x F,, — M be as in the above theorem. Then ®(U x F,)
is open in M and we will show that F), is compact for any y € ®(U x Fy). Suppose y = ®(u, z) with u € U
and z € F,. Then S = <I>({u} X Fx) is a compact, connected submanifold of M satisfying y € S C f~(u).
Because f is a submersion, all of its fibers have the same dimension and thus

dim S =dim F, = dimf_l(f(x)) = dim £~ (u).

Since S C f~1(u) is a full-dimensional submanifold, it is open in f~*(u). But we also know that S is compact
and connected, so it must be a connected component of f~!(u) = f_l(f(y)) But y € S, so we get Fy, =5,
from which we can immediately conclude that Fj, is compact. O

f X is compact and p € Y, then any open set W C X x Y containing X x {p} must also contain a set of the form X x U,
where U C Y is an open set containing p. The proof is a straightforward application of the common “union/intersection trick”

that is applied to prove various point-set-topological properties involving compactness (e.g. compact Hausdorff = regular).



