
The Local Version of Ehresmann’s Theorem

Consider a submersion f :M → N. The vertical distribution of f is the sub-bundle

V = ker(Df) ⊆ TM.

A horizontal distribution is any sub-bundle H ⊆ TM complementary to V, which means that V ⊕H = TM

(such a sub-bundle always exists; for example, if we put a Riemannian metric on M , we can set H = V ⊥).

The restricted tangent mapping depicted below is a fiberwise isomorphism:
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Thus any vector field X ∈ X(N) has a unique horizontal lift, i.e. a vector field X̃ ∈ X(M) that is everywhere

tangent to H and f -related to X. We will use this lifting property to prove the following theorem:

Theorem. For any x ∈M , let Fx denote the connected component of f−1
(
f(x)

)
. For any x ∈M such that

Fx is compact, there exists a open set U ∋ f(x) and an open embedding Φ : U × Fx →M , which satisfies:

• f ◦ Φ(c, y) = c for all c ∈ U and y ∈ Fx;

• Φ
(
f(x), y

)
= y for all y ∈ Fx.

In other words, the map Φ is a local trivialization that restricts to the inclusion of Fx over the point f(x).

Proof. If U is a chart on N that contains f(x), we may restrict our view to the map f : f−1(U) → U without

loss of generality. As such, we may assume that N = Rn and f(x) = 0. For each i = 1, . . . , n, let Xi denote

the horizontal lift of ∂/∂xi. Each Xi admits a maximal flow domain Di ⊆ M × R and a flow ψi : Di → M.

We will inductively define neighborhoods Ui ⊆ Ri of the origin and immersions Φi : Ui×Fx →M such that:

• f ◦ Φi(c, y) = ȷi(c) for all c ∈ Ui and y ∈ Fx, where ȷi : Ri → Rn is inclusion in the first i coordinates;

• Φi

(
0i, y

)
= y for all y ∈ Fx, where 0i denotes the origin in Ri.

Then setting U = Un and Φ = Φn will complete the proof. Indeed, the desired properties of Φ follow

immediately from the corresponding propeties of Φn. In particular, the fact that Φ is an open embedding

follows from the fact that Φn is an immersion and the following “rank-nullity” calculation:

dim(U × Fx) = dimU + dimFx = dimN + dim f−1(x) = dimM.

First, we define Φ0 : Fx →M to be the inclusion map. This clearly satisfies all of the desired conditions.

Now fix i < n and suppose that we have constructed Ui and Φi with the desired properties. Define a map

ι : Ui × R× Fx →M × R by ι(t1, . . . , tn, t, y) =
(
Φi(t1, . . . , tn, y), t

)
.

If we write E = ι−1(Di+1), then E is open in Ui × R× Fx and thus in Ri+1 × Fx. For any y ∈ Fx, we have

ι(0i, 0, y) =
(
Φi(0i, y), 0

)
= (y, 0) ∈ Di+1

by our second assumption on Φi and the definition of a flow domain, so E is a neighborhood of {0i+1}×Fx.

Since ι(E ) ⊆ Di+1, we let the map Φi+1 : E →M be defined by Φi+1 = ψi+1 ◦ ι. More explicitly, we have

Φi+1(t1, . . . , ti, ti+1, y) = ψi+1

(
Φi(t1, . . . , ti, y), ti+1

)
.
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Because the vector fields Xi+1 and ∂/∂xi+1 are f -related, we can observe that f ◦ ψi+1(z, t) = f(z) + tei+1

for any (z, t) ∈ Di+1. Combining this with our first assumption on Φi, we get

f ◦ Φi+1(t1, . . . , ti, ti+1, y) = f ◦ ψi+1

(
Φi(t1, . . . , ti, y), ti+1

)
= f ◦ Φi(t1, . . . , ti, y) + ti+1ei+1

= ȷi(t1, . . . , ti) + ti+1ei+1

= ȷi+1(t1, . . . , ti, ti+1).

Since ȷi+1 is obviously an immersion, this equality implies that DΦi+1 cannot annihilate any vectors tangent

to a slice E ∩
(
Ri+1 × {y}

)
(where y ∈ Fx is arbitrary). Using the second assumption on Φi, we also have

Φi+1(0i+1, y) = ψi+1

(
Φi(0i, y), 0

)
= ψi+1(y, 0) = y.

In particular, this fact implies that DΦi+1 cannot annihilate any vectors tangent to the slice {0i+1} × Fx.

Combining this with the above observation, we now see that DΦi+1 is injective at any point in {0i+1}×Fx.

The rank of a smooth map is lower semi-continuous, so there is an open set W ⊆ E containing {0i+1} × Fx

on which Φi+1 is an immersion. Since Fx is compact, there is some neighborhood Ui+1 ⊆ Ri+1 of the origin

with Ui+1 × Fx ⊆W.1 This completes the inductive step and thus completes the proof of the theorem.

Corollary. The set {x ∈M : Fx is compact} is open in M .

Proof. Suppose that Fx is compact and let Φ : U × Fx → M be as in the above theorem. Then Φ(U × Fx)

is open in M and we will show that Fy is compact for any y ∈ Φ(U × Fx). Suppose y = Φ(u, z) with u ∈ U

and z ∈ Fx. Then S = Φ
(
{u} × Fx

)
is a compact, connected submanifold of M satisfying y ∈ S ⊆ f−1(u).

Because f is a submersion, all of its fibers have the same dimension and thus

dimS = dimFx = dim f−1
(
f(x)

)
= dim f−1(u).

Since S ⊆ f−1(u) is a full-dimensional submanifold, it is open in f−1(u). But we also know that S is compact

and connected, so it must be a connected component of f−1(u) = f−1
(
f(y)

)
. But y ∈ S, so we get Fy = S,

from which we can immediately conclude that Fy is compact.

1If X is compact and p ∈ Y , then any open set W ⊆ X × Y containing X × {p} must also contain a set of the form X × U ,

where U ⊆ Y is an open set containing p. The proof is a straightforward application of the common “union/intersection trick”

that is applied to prove various point-set-topological properties involving compactness (e.g. compact Hausdorff =⇒ regular).


