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Extremal Values of Pi
Nikhil Henry Bukowski Sahoo

Abstract. We discuss the classical results of Stanisław Gołąb, on the values of pi in arbitrary
normed planes, including a classification of extremal values. We reprove a result of J. Duncan,
D. Luecking, and C. McGregor, which states that any norm with quarter-turn symmetry has
pi-value at least π. We also show that a norm is Euclidean if and only if it has quarter-turn
symmetry in some basis and pi-value π.

1. INTRODUCTION. In 1932, Polish geometer Stanisław Gołąb posed and solved
an interesting problem: if we generalize the notion of pi = circumference/diameter
to unit circles of arbitrary norms on the plane, then the possible pi-values comprise
the interval [3, 4]. The article [3] provides a wonderful exposition and proves some
related results, including a new theorem showing that norms on R2 with quarter-turn
symmetry only attain pi-values in the interval [π, 4]. We will recount these results
from scratch, while also classifying the norms that achieve extreme pi-values. For the
extreme values of 3 and 4, the classification was given by Gołąb in his original paper.
For the extreme value of π, with quarter-turn symmetry, the classification is—to the
best of my knowledge—new. We will then relate this final result to a fundamental
question of Minkowski geometry: what conditions are both necessary and sufficient
for a normed space to be Euclidean?

A norm X on Rn is given by a function || · ||X : Rn → [0,∞) such that:

• ||v||X = 0 if and only if v = 0;
• ||cv||X = |c| · ||v||X for all c ∈ R;
• and ||u+ v||X ≤ ||u||X + ||v||X .

Typical examples include the `p norms on Rn for all p ≥ 1:

||v||p = p

√
|v1|p + · · ·+ |vn|p. (1)

Taking the limit of (1) as p→∞ gives the `∞ norm: ||v||∞ = max
{
|v1|, . . . , |vn|

}
.

The most common norm is `2, for which (1) is essentially just the “distance formula.”
For any norm X on Rn, we may define the unit ball and its boundary, the unit sphere:

BX = {v ∈ Rn : ||v||X ≤ 1} and ∂BX = {v ∈ Rn : ||v||X = 1}.
ThenBX is compact and convex, with−BX = BX and 0 ∈ B◦X (the interior ofBX).
Conversely, for any B ⊂ Rn with these properties and any v ∈ Rn, we may define

||v||X =
1

sup{a ∈ R : av ∈ B} .

This is the unique norm X with BX = B. This bijection between norms and certain
convex sets gives the study of normed spaces a geometric flavor: the shape of the unit
ball regulates properties of the norm. For example, we will see that the eponymous
“extremal values of pi” occur if and only if BX is an affine regular hexagon, ellipse,
or parallelogram.

Before diving into anything technical, we can already observe a host of pi-values:
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Figure 1. A norm with pi-value 3 + t, for any t ∈ [0, 1].

Example 1.1. Fix t ∈ [0, 1] and let X be the norm on R2 whose unit disk is

BX = conv{e1, te1 + e2, e2 − e1,−e1,−te1 − e2, e1 − e2}.1

This is shown in Figure 1. Note that BX is a hexagon, except in the case of t = 1,
when it degenerates into a square. Since e1, e2, e2 − (1 − t)e1 ∈ ∂BX , we see that
these vectors have norm 1 under X. Hence, the upper half of the unit circle has length

||−e1 − (e2 − e1)||X + ||(e2 − e1)− (te1 + e2)||X + ||(te1 + e2)− e1||X
= ||e2||X + (1 + t)||e1||X + ||e2 − (1− t)e1||X = 3 + t.

The bottom half of the unit circle is analogous, so we see that ∂BX has length 6 + 2t.
Notably, this length is measured in terms of the norm X , so it is sometimes called the
self-circumference ofX . To find the value of pi forX , we divide this circumference by
the length 2 of the diameter, yielding 3 + t. As t ranges over [0, 1], this indeed shows
that any real number in the interval [3, 4] is the value of pi in some normed plane.

In what follows, our first goal will be to understand the length of any curve in terms
of any norm, so that we may study the “self-circumference” of arbitrary norms on R2.

2. ARC-LENGTH IN TERMS OF A NORM. A metric on a set A is a symmetric
function d : A×A→ [0,∞) such that

• d(u, v) = 0 if and only if u = v;
• and d(u,w) ≤ d(u, v) + d(v, w).

A norm X on Rn induces a metric dX(u, v) = ||u− v||X on Rn, with the additional
properties dX(u+w, v +w) = dX(u, v) and d(au, av) = a · d(u, v) for any a > 0
and u, v, w ∈ Rn. Conversely, any metric on Rn with these properties defines a norm.

A metric d on a setA defines some notion of “shortest distance” between two points,
but it can also be useful to consider the length travelled along more circuitous paths.
For any u, v ∈ A, a path from u to v is any function ϕ : [a, b]→ A with ϕ(a) = u
and ϕ(b) = v. If u = v, then we call ϕ a loop with basepoint u. The length of ϕ is

lendϕ = sup

{
n∑
i=1

d
(
ϕ(ti−1), ϕ(ti)

)
: a = t0 ≤ · · · ≤ tn = b and n ∈ N

}
.

1We write conv(A) to denote the convex hull of A, which here is simply the polygon with these vertices.
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We call the sequence ϕ(t0), . . . , ϕ(tn) a partition of the path ϕ. The resulting length
always takes a well-defined value in [0,∞]. First, we note some elementary properties.
As the results are intuitively plausible, the proofs are left to the interested reader.

(a) For any paths ϕ1 : [a, b] → A and ϕ2 : [b, c] → A such that ϕ1(b) = ϕ2(b),
we define their concatenation ϕ1 • ϕ2 : [a, c]→ A as

(ϕ1 • ϕ2)(t) =

{
ϕ1(t), a ≤ t ≤ b.
ϕ2(t), b ≤ t ≤ c.

In the arithmetic of [0,∞], we then have lend(ϕ1 • ϕ2) = lend(ϕ1) + lend(ϕ2).

(b) Given a loop ϕ : [a, c]→ A and any b ∈ [a, c], we may define

ϕ̃(t) =

{
ϕ(t), b ≤ t ≤ c;

ϕ(t− c+ a), c ≤ t ≤ b+ c− a.

This loop ϕ̃ : [b, b+ c− a]→ A is essentially just ϕ with a shifted basepoint.
Using (a), we see that lendϕ̃ = lendϕ, so the basepoint does not matter when
measuring length. As such, we view loops as functions S1 → A from the circle,
which possess a well-defined notion of length (measured from any basepoint).

(c) If ϕ : [c, d]→ A is a path and f : [a, b]→ [c, d] is monotonic and surjective,
then lend(ϕ ◦ f) = lendϕ. Thus if ϕ is an injective, continuous path or loop,
then lendϕ depends only on the image of ϕ. Additionally, given any two curves,
we can translate their domains so that the concatenation in (a) is well-defined;
the resulting length will be independent of how this is done. Whenever we write
a concatenation of curves, such a reparametrization will be implicitly assumed.

(d) For any u, v ∈ Rn, we use the notation [u, v] = {(1− t)u+ tv : 0 ≤ t ≤ 1}
and (u, v) = {(1 − t)u + tv : 0 < t < 1} for the closed and open segments
from u to v. For any sequence x0, x1, . . . , xn ∈ Rn, we have a polygonal path

[x0, x1, . . . , xn] = [x0, x1] • · · · • [xn−1, xn].

For any norm X on Rn, the length in terms of dX of such a path is

lenX [x0, x1, . . . , xn] = dX(x0, x1) + · · ·+ dX(xn−1, xn).

By additivity of lengths in (a), it suffices to prove that lenX [u, v] = ||u− v||X .
(e) Suppose that X and Y are norms on Rn with BX ⊂ BY . Then ||v||Y ≤ ||v||X

for any v ∈ Rn, and thus lenY ϕ ≤ lenXϕ for any path ϕ : [a, b]→ Rn.

We writeM for the set of all norms on R2, and we will only be considering lengths
in terms of these norms. It can also be useful to identify R2 = C and use some notation
befitting complex numbers. In particular, a counterclockwise quarter-turn is z 7→ iz,
and the `2 norm is just the absolute value |z| = ||z||2.We will speak of angles in terms
the function arg : C− 0→ S1. Angle measure will always be considered in radians.

Convex paths. In general, curves need not have finite length with respect to a norm,
even if they are continuous and injective.2 However, we are interested in curves that
form a portion of the boundary of a convex set in R2. Below, we will prove a useful
comparison lemma; in particular, this will imply that all such curves have finite length.

2A typical example is the Koch snowflake. In general, a continuous, injective curve or loop has finite length
if and only if its Hausdorff dimension is 1 (or 0, in the case when the “curve” is just a single point) [4].
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Figure 2. Comparing the lengths of curves bounding convex regions.

If B ⊂ Rn is a compact, convex set with B◦ 6= ∅, we will call B a convex body.
Then a set B ⊂ Rn is the unit ball of a norm on Rn if and only if B is a convex body
and symmetric about the origin. IfB ⊂ R2 is a convex body, then ∂B is a continuous,
injective loop: choose any x ∈ B◦ and define ϕ : ∂B → S1 by ϕ(y) = arg(y − x).
The resulting length depends only on the set ∂B, so any x ∈ B◦ works equally well.
We now compare the lengths of ∂B for various such B.

Lemma 2.1. If B1, B2 ⊂ R2 are any two convex bodies with B1 ⊂ B2, then we have
lenX(∂B1) ≤ lenX(∂B2) for any norm X ∈M.

Proof. We closely follow the proof of Lemma 1(a) in [3]. Let x0, . . . , xn be a partition
of ∂B1. Since ∂B1 is a loop, we have x0 = xn. For each i = 1, . . . , n, we define

yi = xi−1 + sup{t ∈ [0,∞) : xi−1 + t(xi − xi−1) ∈ B2}(xi − xi−1).

This is the furthest point along the rayR = {xi−1 + t(xi − xi−1) ∈ R2 : t ∈ [0,∞)}
that is also contained inB2. In particular, we see that yi ∈ ∂B2. (Often, but not always,
yi is the unique point in R ∩ ∂B2.) We also set y0 = yn, so the sequence y0, . . . , yn
is a partition of ∂B2. This is illustrated in Figure 2. Because xi ∈ [xi−1, yi], we have

dX(xi−1, xi) + dX(xi, yi) = dX(xi−1, yi) ≤ dX(xi−1, yi−1) + dX(yi−1, yi)

for all i = 1, . . . , n, by the triangle inequality. Summing these inequalities, we have

n∑
i=1

dX(xi−1, xi) +
n∑
i=1

dX(xi, yi) ≤
n∑
i=1

dX(xi−1, yi−1) +
n∑
i=1

dX(yi−1, yi).

Since x0 = xn and y0 = yn, the middle two sums are equal and therefore

n∑
i=1

dX(xi−1, xi) ≤
n∑
i=1

dX(yi−1, yi) ≤ lenX(∂B2).

The partition x0, . . . , xn was arbitrary, so this gives lenX(∂B1) ≤ lenX(∂B2).
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If B ⊂ R2 is a convex body, then we have B ⊂ [−a, a]2 for large enough a > 0.
Since polygonal curves clearly have finite length, Lemma 2.1 gives lenX(∂B) <∞.
More generally, we make the following definition:

Definition 2.2. We say that a path ϕ from u to v is convex if ϕ = [u, v] or if ϕ • [v, u]
is the boundary of a convex body. We write ϕ1 ≺ ϕ2 if ϕ1 and ϕ2 are both convex
paths from u to v such that conv(ϕ1) ⊂ conv(ϕ2).

For any convex path ϕ and X ∈ M, we have lenXϕ ≤ lenX
(
ϕ • [v, u]

)
< ∞.

Thus all convex paths have finite length. We will need some further results concerning
convex paths and their lengths. A different proof of (a) can be found in [12, §§4.3–4.4].

Lemma 2.3. (a) If ϕ1 ≺ ϕ2, then lenXϕ1 ≤ lenXϕ2 for any norm X ∈M.

(b) If ϕ is a convex path between two distinct points u, v ∈ R2 and ϕ ∩ (u, v) 6= ∅,
then ϕ = [u, v].

(c) If B ⊂ R2 is convex, with x ∈ B and y ∈ B◦, then (x, y) ⊂ B◦.
(d) If B ⊂ R2 is convex and x, z ∈ B, then either (x, z) ⊂ ∂B or (x, z) ⊂ B◦.
(e) If B ⊂ R2 is a convex body, then any path along its boundary (i.e., a nonempty,

closed, connected subset of ∂B) is a convex path.
(f) If ϕ : [a, b]→ R2 is a convex path and [c, d] ⊂ [a, b], then ϕ|[c,d] is also convex.
(g) Let ϕ be a convex path and suppose that the points p, q, r ∈ ϕ occur in this

order along the path ϕ. If q ∈ (p, r), then [p, r] ⊂ ϕ.
Proof. (a) We leave the case when ϕ1 = [u, v] to the reader. If ϕ2 is a line segment,
then ϕ1 ≺ ϕ2 implies that ϕ1 is as well. Hence, for i = 1 or 2, we see that conv(ϕi)
is a convex body bounded by ∂ conv(ϕi) = ϕi • [v, u]. Thus, Lemma 2.1 gives

lenXϕ2 + dX(v, u) = lenX
(
ϕ2 • [v, u]

)
≥ lenX

(
ϕ1 • [v, u]

)
= lenXϕ1 + dX(v, u),

since conv(ϕ1) ⊂ conv(ϕ2). The desired inequality follows immediately.
(b) If ϕ • [v, u] is the boundary of a convex body, then ϕ and [v, u] only intersect

at u and v, so ϕ ∩ (u, v) = ∅. This contradicts our initial assumption, so ϕ = [u, v].

(c) We may suppose that x 6= y, in which case v = i(x − y) is a nonzero vector
orthogonal to x− y. Since y ∈ B◦, we can find ε > 0 with y ± εv ∈ B. The triangle
T = conv(x, y + εv, y − εv} is contained inB, by convexity. But y lies in the interior
of the edge of T opposite the vertex x, which clearly gives (x, y) ⊂ T ◦ ⊂ B◦.

(d) Suppose y ∈ (x, z) ∩B◦. Using (c) twice gives (x, y) ⊂ B◦ and (z, y) ⊂ B◦,
and thus (x, z) ⊂ B◦. On the other hand, if no such y exists, then (x, z) ⊂ ∂B.

(e) For brevity, we will only sketch this proof. Letϕ be a path from u to v along ∂B.
By (d), either (u, v) ⊂ B◦ or (u, v) ⊂ ∂B. But if (u, v) ⊂ ∂B, then eitherϕ = [u, v]
or ϕ • [v, u] = ∂B, so ϕ is convex. Thus we suppose that (u, v) ⊂ B◦. Then the line
` through u and v only intersects ∂B in these two points, and because ϕ is connected,
it must lie in one of the closed half-planes cut out by `. If H denotes this half-plane,
then since H is convex and closed, we can see that B ∩H is a convex body such that
∂(B ∩H) = ϕ • [v, u]. This shows that ϕ is a convex path in any of the above cases.

(f) Let ϕ(a) = u and ϕ(b) = v. If ϕ = [u, v], then ϕ|[c,d] is clearly a line segment.
Otherwise, ϕ • [v, u] is the boundary of a convex body B. Then ϕ|[c,d] is a path along
the boundary ∂B, so ϕ is a convex path by (e).

(g) Let ψ be the portion of ϕ between p and r. Then q ∈ ψ ∩ (p, r) by assumption,
and (f) shows that ψ is a convex path from p to r, so (b) gives [p, r] = ψ ⊂ ϕ.
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3. WHAT VALUES DOES PI TAKE? With the above notion of length, we can now
define the promised generalization of pi for any norm on R2.

Definition 3.1. For any norm X ∈M, define $(X) = lenX(∂BX)/2. This symbol
$ was historically used as a cursive π. The characters mean two different things to us:
we write $ for “pi in terms of a norm” and π = 3.14159 . . . for the classic constant.

The results of the previous section show us that $(X) ∈ (0,∞) for any norm X .
Since −BX = BX , we see that the loop ∂BX has half-turn symmetry, so we can also
calculate $(X) as the length of the intersection of ∂BX with the upper half-plane.

In this section, we will eventually show that the image is $(M) = [3, 4]. Already,
the polygonal norms treated in Example 1.1 show that [3, 4] ⊂ $(M).

Notice that$(X) depends onX in two ways: the unit circle ∂BX is defined byX ,
but we also use X to measure length. These two dependencies are precisely balanced,
in a way that we will now make precise.

Definition 3.2. Let T : Rn → Rn be a linear isomorphism. Given any normX on Rn,
the push-forward norm TX is defined by ||v||TX = ||T−1v||X . If norms X1 and X2

satisfy TX1 = X2 for some isomorphism T , we will call them linearly equivalent.
Similarly, we say that two sets A1, A2 ⊂ Rn are linearly equivalent if T (A1) = A2

for some linear isomorphism T.

First, note that BTX = T (BX) for any norm X on Rn and linear isomorphism T .
Thus we can see that norms X1 and X2 are linearly equivalent if and only if their unit
balls BX1

and BX2
are linearly equivalent. This fact will be of frequent use below.

Fix an isomorphism T : Rn → Rn and a norm X on Rn. For u, v ∈ Rn, we have

dX(u, v) = ||u− v||X = ||Tu− Tv||TX = dTX(Tu, Tv).

Now consider an arbitrary curve ϕ : [a, b] → Rn. If x0, . . . , xn is a partition of ϕ,
then T (x0), . . . , T (xn) is a partition of T ◦ ϕ and we have

n∑
i=1

dX(xi−1, xi) =
n∑
i=1

dTX
(
T (xi−1), T (xi)

)
≤ lenTX(T ◦ ϕ).

This proves that lenXϕ ≤ lenTX(T ◦ ϕ). Replacing T by T−1 gives

lenTX(T ◦ ϕ) ≤ lenT−1TX(T−1 ◦ T ◦ ϕ) = lenXϕ.

Thus lenXϕ = lenTX(T ◦ ϕ). Note that ∂BTX = T (∂BX), so when n = 2 we have

$(X) = lenX(∂BX)/2 = lenTX(∂BTX)/2 = $(TX).

Lemma 3.3. The map $ :M→ (0,∞) is constant on linear equivalence classes.

There are three linear equivalence classes of particular importance:

(a) The constant π is defined as π = $(`2). Since ∂B`2 is the classical unit circle,
a norm X ∈ M is linearly equivalent to `2 if and only if BX is a filled ellipse.
Therefore, all ellipses (centered at the origin) yield $ = π.

(b) Taking t = 1 in Example 1.1, notice that the unit ball is precisely

B`∞ = {(x, y) ∈ R2 : −1 ≤ x, y ≤ 1},

6 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121
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so our calculation in Example 1.1 gives$(`∞) = 4. This unit circle is a square,
so X ∈ M is linearly equivalent to `∞ if and only if BX is a parallelogram.
Therefore, all parallelograms (centered at the origin) yield $ = 4. In particular,
since B`1 is the square with vertices {e1,−e1, e2,−e2}, we have $(`1) = 4.

(c) We will say thatB ⊂ R2 is a linearly regular hexagon ifB is linearly equivalent
to a regular hexagon centered at the origin. This is equivalent to requiring that

B = conv{u, v, v − u,−u,−v, u− v}
for some linearly independent u, v ∈ R2. (This is an actual regular hexagon
when |u|2 = |v|2 = 2〈u, v〉.) Taking t = 0 in Example 1.1 gives us a norm X ,
whereBX is a linearly regular hexagon (take u = e1 and v = e2). We calculated
that $(X) = 3, so we can see that all linearly regular hexagons yield $ = 3.

In what follows, we will show that$(M) = [3, 4] and that (b) and (c) characterize
the extremal cases. More specifically, $(X) = 4 if and only BX is a parallelogram
(centered at the origin), and$(X) = 3 if and only ifBX is a linearly regular hexagon.
For essentially all of this, we will closely follow Schäffer’s approach in [11].3

Circumscribed parallelograms. We will now address the upper bound$ ≤ 4. First,
we prove that any norm on R2 can be put into a particular “normalized” form.

Lemma 3.4. For anyX ∈M, there exists some isomorphism T : R2 → R2 such that
||e1||TX = ||e2||TX = 1 and ||(x, y)||TX ≥ max

(
|x|, |y|

)
.

Proof. This proof differs from [3, 11] and more closely follows [12, Theorem 3.2.1].
We view R2 as the xy-plane in R3 so that we may consider cross products. Since BX
is compact, we can find two vectors u, v ∈ BX that maximize ||u× v||2. Now define

P = {su+ tv : |s| ≤ 1 and |t| ≤ 1}.
Suppose that su+ tv ∈ BX . Then we have |s| ≤ 1, because

|s| · ||u× v||2 = ||su× v||2 = ||(su+ tv)× v||2 ≤ ||u× v||2,
and we can similarly show that |t| ≤ 1. This proves that BX ⊂ P.

Since u, v ∈ ∂P , we must also have u, v ∈ ∂BX . Therefore ||u||X = ||v||X = 1.
If a = max

(
|s|, |t|

)
for some s, t ∈ R, then aBX ⊂ aP and thus ||su+ tv||X ≥ a.

Hence, if we set T (u) = e1 and T (v) = e2, we get the desired isomorphism T .

Using this result, the proof of $ ≤ 4 is almost immediate, although a little more
work will be needed to classify all X ∈M satifying $(X) = 4.

Theorem 3.5. For any norm X ∈ M, we have $(X) ≤ 4. Moreover, we have
$(X) = 4 if and only if BX is a parallelogram (centered at the origin).

Proof. Using Lemma 3.4, we may assume that ||(x, y)||X ≥ max
(
|x|, |y|

)
and that

||e1||X = ||e2||X = 1, because $ and the property of being a parallelogram are both
preserved under linear equivalence. Then BX ⊂ B`∞ and therefore Lemma 2.1 gives

2$(X) = lenX(∂BX) ≤ lenX(∂B`∞) = 4
(
||e1||X + ||e2||X) = 8.

3The original paper [7] is only available as a physical copy in a few libraries, making it fairly inaccessible,
particularly during a pandemic. As such, most authors reference [7] by way of a French-language summary,
which has had the side-effect of dissociating the paper (and even the journal name) from its original language.
While [11] does not credit Gołąb with these results, it reproduces all the proofs (making no claim to originality)
and sets forth fascinating new avenues of study by generalizing $ to higher dimensions in multiple ways.
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Figure 3. Classifying the case when $ = 4.

Now suppose that $(X) = 4. If e1 + e2, e1 − e2,−e1 − e2, e2 − e1 ∈ BX , then

B`∞ = conv{e1 + e2, e1 − e2,−e1 − e2, e2 − e1} ⊂ BX ⊂ B`∞ .

Then X = `∞ and BX is thus a square. Hence, we may assume that one of these
points is not in BX ; after a rotation, we may assume that e1 + e2 /∈ BX . We define

ξ = max{x+ y − 1 : (x, y) ∈ BX}.

Note that ξ exists by the compactness of BX and 0 ≤ ξ < 1 because e1 + e2 /∈ BX .
Let ϕ be the portion of ∂BX in the upper half-plane, a path from e1 to −e1. Then

ϕ ≺ [e1, e1 + ξe2, ξe1 + e2, e2 − e1,−e1],

as illustrated in Figure 3. Therefore, Lemma 2.3(a) gives

4 = lenXϕ ≤ lenX [e1, e1 + ξe2, ξe1 + e2, e2 − e1,−e1]
= ||ξe2||X + ||(1− ξ)(e2 − e1)||X + ||(1 + ξ)e1||X + ||e2||X
= 2 + 2ξ + (1− ξ)||e2 − e1||X ≤ 2(1 + ξ) + 2(1− ξ) = 4,

since ||e2 − e1||X ≤ ||e2||X + ||e1||X = 2. We then must have equality throughout;
in particular, the last inequality becomes ||e2 − e1||X = 2 (since 1− ξ > 0). Hence,
1
2
(e2 − e1) ∈ ∂BX and so [e2,−e1] ⊂ ∂BX by Lemma 2.3(g). Then e2 − e1 /∈ BX ,

so we may repeat this argument with e1 negated, to show that [e2, e1] ⊂ ∂BX as well.
Therefore ϕ = [e1, e2,−e1], which implies that X = `1 and BX is thus a square.

Inscribed hexagons. We now prove that$ ≥ 3. In classifying the case when$ = 3,
we need some notions from convex geometry, of which we assume no prior knowledge.
To the more experienced reader, some of the choices in presenting this background
material may seem a little odd, but they have all been chosen to best fit what follows.

Definition 3.6. Let B ⊂ R2 be a convex set. If F ⊂ B is nonempty, convex, and

x, y ∈ B and (x, y) ∩ F 6= ∅ =⇒ x, y ∈ F,

we call F a face of B. We say that p ∈ B is an extreme point if {p} is a face, i.e.,

x, y ∈ B and p ∈ (x, y) =⇒ x = y = p.

If ` ⊂ R2 is any line where B is entirely in one of the closed half-planes cut out by `,
and q ∈ ` ∩B, we say that ` supportsB at the point q. If the point q is left unspecified,
it is still implied that a supporting line must intersect B.
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We will use supporting lines to prove that convex bodies in R2 always contain
extreme points. But first, we leave the following facts for the reader to verify:

(a) If F is a face of B, then E ⊂ F is a face of F if and only if E is a face of B.
(b) If F ⊂ B is a proper face of B (i.e., F 6= B), then F ⊂ ∂B.
(c) For any p, q ∈ R2, the extreme points of the line segment [p, q] are p and q.

Lemma 3.7. Let B ⊂ R2 be a convex body and let ` ⊂ R2 be any line.

(a) If ` is a supporting line for B, then ` ∩B is a face of B.
(b) The line ` supports B at q if and only if q ∈ ` ∩B ⊂ ∂B.
(c) If there exist distinct u, v ∈ ` ∩B with [u, v] ⊂ ∂B, then ` ∩B is a face of B

and a closed line segment.
(d) B has an extreme point.

Proof. (a) As an intersection of two convex sets, the set F = ` ∩ B is also convex.
Because ` is a supporting line for B, this intersection is also nonempty. Suppose that
x, y ∈ B satisfy (x, y) ∩ F 6= ∅. Then the open segment (x, y) intersects `, so either
x, y ∈ ` or x and y lie strictly on opposite sides of `. The latter is impossible, since B
is contained in one of the closed half-planes cut out by `. Therefore, we have x, y ∈ `
and thus x, y ∈ F. This proves that F is a face of B.

SinceB is compact and convex, notice that F = ` ∩B is a compact, convex subset
of the line `. Thus F = [u, v] for some u, v ∈ `. We will use this in (c) and (d) below.

(b) First, suppose that ` supports B at q. This means that q ∈ ` ∩ B and B ⊂ H,
where H is a closed half-plane cut out by `. Then B − ∂B = B◦ ⊂ H◦ = H − `,
which implies that ` ∩B ⊂ ∂B.

Conversely, suppose that q ∈ ` ∩ B ⊂ ∂B. Because B is a convex body, we can
choose some y ∈ B◦, which cannot lie on ` by assumption. Let H denote the closed
half-plane cut out by ` that contains y. For the sake of contradiction, suppose that there
were some x ∈ B −H. Then x and y would lie strictly on opposite sides of `, yielding
a unique point {z} = ` ∩ (x, y). By Lemma 2.3(c), we then have z ∈ (x, y) ⊂ B◦,
which contradicts ` ∩B ⊂ ∂B. Thus B ⊂ H , so ` supports B at q.

(c) Applying (a), it suffices to show that ` supportsB. For the sake of contradiction,
suppose that y ∈ ` ∩ B◦. Because [u, v] ⊂ ∂B, the point y must lie on ` − [u, v];
without loss of generality, we assume that u lies between v and y. Then Lemma 2.3(c)
gives u ∈ (v, y) ⊂ B◦, since y ∈ B◦. But this contradicts u ∈ ∂B, so we must have
` ∩B◦ = ∅ and thus ` ∩B ⊂ ∂B. Then (b) implies that ` supports B at u.

(d) Let Π : R2 → R be the projection onto the first coordinate. Define the quantity
m = max Π(B) (this exists because B 6= ∅ is compact) and the line ` = Π−1(m).
Then ` ∩ B is a nonempty subset of ∂B, so (b) shows that ` supports B. Thus (a)
shows that ` ∩B is a face ofB, which is of the form ` ∩B = [u, v] for some u, v ∈ `.
Therefore, u is an extreme point of the face ` ∩B, and thus an extreme point ofB.

We now prove the bound $ ≥ 3 by mimicking the classical straightedge-compass
construction of an equilateral triangle. As with the upper bound, this is straightforward,
but a more careful analysis is required to classify all X ∈M satisfying $(X) = 3.

Theorem 3.8. For any norm X ∈ M, we have $(X) ≥ 3. Moreover, we have
$(X) = 3 if and only if BX is a linearly regular hexagon.

Proof. By Lemma 3.7(d), we may choose any extreme point u ∈ BX ; then u ∈ ∂BX ,
so we have ||u||X = 1. Note that ||0||X = 0, ||2u||X = 2, and 0, 2u ∈ ∂BX + u.
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Figure 4. Three stages in the proof of Theorem 3.8.

Since ∂BX is connected, there exists some vector v ∈ ∂BX + u with ||v||X = 1.
Then v − u ∈ ∂BX , so ||v − u||X = 1. This construction is illustrated in Figure 4(a).
For any 0 ≤ ε < 1, let wε = v + εu and define the hexagon

Hε = conv{u,wε, v − u,−u,−v, u− v}.

The vertices are listed in cyclic order (see Figure 4(a)), which we use to calculate

lenX(∂Hε) = ||wε − u||X + ||v − u− wε||X
+ ||−v||X + ||u− v||X + ||u||X + ||v||X

= ||wε − u||X + (1 + ε)||u||X + 4 = ||wε − u||X + 5 + ε.

If wε ∈ BX , then we have Hε ⊂ BX by the convexity of BX , so Lemma 2.1 gives

lenX(∂BX) ≥ lenX(∂Hε) = ||wε − u||X + 5 + ε. (2)

Since w0 = v ∈ BX and ||w0 − u||X = ||v − u||X = 1, this gives lenX(∂BX) ≥ 6.
This proves that $(X) ≥ 3. Now assume that $(X) = 3, i.e., lenX(∂BX) = 6.
Notice that H0 = conv{u, v, v − u,−u,−v, u − v} is a linearly regular hexagon,
which is also X-equilateral, meaning that any adjacent vertices are X-distance 1 apart.
Under the assumption that $(X) = 3, we will prove that BX = H0.

Let ϕ denote the shorter path along ∂BX between any two adjacent vertices of H0.
Then we have lenXϕ ≥ 1, since the endpoints of ϕ are X-distance 1 apart. However,
lenX(∂BX) = 6 is the sum of the lengths of these six paths, so we must have equality
lenXϕ = 1 for each path. Now let ϕ be the shorter path along ∂BX from v to v − u.
Since lenXϕ = 1, there is some y ∈ ϕ with dX(v, y) = 1/2. We also get

1 = dX(v, v − u) ≤ dX(v, y) + dX(y, v − u) ≤ lenXϕ = 1,

since v, y, v − u is a partition of ϕ. We have equality throughout, so dX(v, y) = 1/2
implies that dX(y, v − u) = 1/2. Thus 2(v − y), 2(y − v + u) ∈ ∂BX . Notice that

u = 1
2
· 2(v − y) + 1

2
· 2(y − v + u) ∈

(
2(v − y), 2(y − v + u)

)
.4

This process is illustrated in Figure 4(b). Because u is an extreme point, we must have
u = 2(v − y) = 2(y − v + u) and thus y = v − u/2, the midpoint of [v, v − u].
Hence y ∈ ϕ ∩ (v, v − u) and therefore ϕ = [v, v − u] by Lemmas 2.3(e) and (b).

4For any vectors p, q ∈ R2, we have p+ q = u if and only if u is the midpoint of [2p, 2q].
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If we can prove that v is an extreme point, then we can iterate this whole process,
i.e., show that [v − u,−u] ⊂ ∂BX and then show that v − u is an extreme point, etc.
In total, this shows that ∂BX = ∂H0 and thusBX = H0 is a linearly regular hexagon.

Consider the line ` = {v + tu : t ∈ R} and note that v, v − u ∈ `. Since we have
shown that [v, v − u] = ϕ ⊂ ∂BX , Lemma 3.7(c) states that ` ∩BX is a face of BX
and a closed line segment. Hence, to show that v is an extreme point of BX , we need
only show that v is an extreme point of ` ∩BX , i.e., an endpoint of this line segment.
But if v is not an endpoint, then there exists 0 < ε < 1 with wε = v + εu ∈ ` ∩BX .
Then we have wε − u = εv + (1− ε)(v − u) ∈ [v, v − u] ⊂ ∂BX , so (2) becomes

6 = lenX(∂BX) ≥ ||wε − u||X + 5 + ε = 6 + ε > 6.

This is a contradiction, so v must be an endpoint of ` ∩BX (see Figure 4(c)).

Finally, we have proven Gołąb’s theorem: that 3 ≤ $(X) ≤ 4 for any X ∈ M,
with equality on the right if and only if BX is a parallelogram (centered at the origin),
and equality on the left if and onlyBX is a linearly regular hexagon. In the next section,
we depart from Gołąb’s classical results—as retold by Schäffer—and focus instead on
extending the result of [3, Proposition 3], where the constant π retakes center stage.

4. WHICH NORMS ARE EUCLIDEAN? Inner products are symmetric, bilinear
functions 〈 · , · 〉 : Rn × Rn → R, such that v 7→

√
〈v, v〉 is a norm on Rn. If a norm

X arises from an inner product in this way, it is said to be Euclidean. The renowned
“parallelogram law” states that a normX is Euclidean if and only if, for all u, v ∈ Rn,

2||u||2X + 2||v||2X = ||u+ v||2X + ||u− v||2X . (3)

Since (3) only involves two vectors at a time, a norm on Rn is Euclidean if and only if
its restriction to any two-dimensional subspace is Euclidean. This gives a special role
to geometric conditions for norms on R2 that precisely classify the Euclidean norms.
We will write E ⊂M to denote the set of Euclidean norms on R2.

The standard inner product on Rn is simply given by 〈u, v〉 = u1v1 + · · ·+ unvn,
and it induces the Euclidean `2 norm. Any inner product admits an orthonormal basis
(using the Gram–Schmidt process), which uniquely characterizes this inner product.
Mapping this basis to e1, . . . , en, we can see that any Euclidean norm on Rn is linearly
equivalent to `2. But if 〈 · , · 〉 is an inner product and T : Rn → Rn is an isomorphism,
then the map (u, v) 7→ 〈T−1u, T−1v〉 is also an inner product. Thus Euclidean norms
are closed under linear equivalence, so a norm X on Rn is Euclidean if and only if X
is linearly equivalent to the `2 norm (i.e.,BX is an ellipsoid). Thus for n = 2, we have

X ∈ E =⇒ $(X) = $(`2) = π,

by Lemma 3.3. But the converse does not hold, since taking t = π − 3 in Example 1.1
yields a norm X , where $(X) = π and BX is a hexagon.

The fundamental notions carried by an inner product are distance and orthogonality,
so it makes sense to ask if the relation of “orthogonality” can be generalized to pairs
of vectors in any normed space. In fact, there are several ways to do so; a particularly
useful one takes inspiration from the classic theorem of Euclidean geometry that states,
“a line tangent to a circle is perpendicular to the coincident radius.”

Definition 4.1. Let X be a norm on Rn and consider two nonzero vectors x, y ∈ Rn.
We will say that y is Birkhoff 5 orthogonal to x, written y

X̀
x, if ||x+ ty||X ≥ ||x||X

5Although it bears Birkhoff’s name, this concept goes back at least to Carathéodory [2].
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for all t ∈ R. This is equivalent to saying that the line {x+ ty : t ∈ R} is “tangent”
to the ball of radius ||x||X , meaning that it intersects the boundary but not the interior.6

While the relation
X̀

depends intimately on the normX , we will suppress the subscript
and just write y `x when there is no chance of confusion.

For a Euclidean norm, we have y `x if and only if 〈x, y〉 = 0, so ` is symmetric.
It is important to note that this symmetry does not hold in general: we cannot freely
interchange x and y. To remember the order in which to write them, notice that y `x
is a pictograph of the line {x+ ty : t ∈ R} meeting with the radius {tx : t ∈ [0, 1]}.
We will return to the question of symmetry for ` later.

Now, we will classify circles, using Birkhoff orthogonality and quarter-turns in C.
In this next lemma, the notation of complex numbers will help to simplify our notation.
In particular, for any nonzero v ∈ C, we will consider the perpendicular line

`v = {v + tiv : t ∈ R}.

For any norm X ∈ M and v ∈ ∂BX , notice that iv
X̀
v if and only if `v ∩B◦X = ∅.

This notation of `v will be useful in Lemmas 4.2 and 4.3, as well as in Theorem 4.4.

Lemma 4.2. SupposeX ∈M satisfies iv
X̀
v for all v ∈ ∂BX . ThenX is a positive

multiple of `2. In particular, this implies that X is Euclidean.

Proof. For brevity, we will omit some details. For any u ∈ C and t ∈ [0, 1], letDt(u)
be the (Euclidean) disk of diameter [−tu, u]. The reader may verify that v ∈ D0(u)◦

if and only if `v intersects (0, u). (Use the inscribed angle theorem or algebraically
manipulate the inner product.) For any u ∈ BX , Lemma 2.3(c) gives (0, u) ⊂ B◦X ,
because we always have 0 ∈ B◦X .

For the sake of contradiction, suppose we have u ∈ BX and v ∈ D0(u)◦ − B◦X .
Then there exists some w ∈ `v ∩ (0, u). Since ||v||X ≥ 1, we can define

v̂ =
v

||v||X
∈ ∂BX and ŵ =

w

||v||X
∈ (0, u).

Then ŵ ∈ `v̂ ∩ (0, u) ⊂ `v̂ ∩ B◦X , which contradicts iv̂ ` v̂. Therefore, if u ∈ BX ,
thenD0(u)◦ ⊂ B◦X and henceD0(u) ⊂ BX , sinceBX is closed. Now, we may define

m = sup{t ∈ [0, 1] : u ∈ BX =⇒ Dt(u) ⊂ BX}. (4)

Then m ∈ [0, 1] and since BX is closed, we see that u ∈ BX implies Dm(u) ⊂ BX .
Since BX is compact, there exists w ∈ BX with maximal `2-norm. If m = 1, then

BX ⊂ |w| ·B`2 = D1(v) ⊂ BX .

ThusBX = |w| ·B`2 and henceX is a positive multiple of `2 (assuming thatm = 1).
To complete the proof, we will assume that m < 1 and derive a contradiction. Let

a =
1 +m

1−m and s =

(
a

a+ 1

)2
=

(
m+ 1

2

)2
.

The reader may check that m < s < 1. For an arbitrary point u ∈ BX , we will prove
thatDs(u) ⊂ BX , which contradicts the definition ofm in (4). We assume that u 6= 0,

6When n = 2, Lemma 3.7(b) shows that this notion of ”tangency” is precisely that of a supporting line.
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(a) (b)
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u Dm(u)

Ds(u)

L

−L

Figure 5. Sweeping out a limaçon to get a larger disk.

since Ds(0) = {0} ⊂ BX is clear. We will now use polar coordinates relative to u,
meaning that the coordinates (r, θ) denote the point reiθu. In this notation, we define

±L =

{
(r, θ) ∈ R2 : r ≤ a± cos θ

a+ 1

}
. (5)

The ± on each side makes sense, since negating cos θ corresponds to a rotation by π,
which is equivalent to reflecting L through the origin to get −L. The boundary curve
∂L is a limaçon, which possesses the lovely property that it occurs as the “envelope”
of the family of curves {∂D0(v) : v ∈ ∂Dm(u)} [8]. This is illustrated in Figure 5(a).
Our use of this fact will be confined to the following statement:

L =
⋃
v

D0(v),where the union ranges over all v ∈ ∂Dm(u).

Since v ∈ ∂Dm(u) ⊂ BX implies D0(v) ⊂ BX , we see that L ⊂ BX . Because BX
is symmetric about the origin, we also have−L ⊂ BX .Next, we consider the function

f(t) =
(1− s)t+

√
4s+ (1− s)2t2
2

.

This function is cooked up in order to describe the diskDs(u) in our polar coordinates:

Ds(u) =
{

(r, θ) ∈ R2 : r ≤ f(cos θ)
}
. (6)

To see why this holds, the reader should use the law of cosines to show that the curve
∂Ds(u) is described by the equation r2 = (1− s)r cos θ + s, then use the quadratic
formula to find the value of r > 0, yielding the equation r = f(cos θ) for ∂Ds(u).
The reader should also verify that f is convex and use this to prove the inequalities

t ∈ [0, 1] =⇒ f(t) ≤ a+ t

a+ 1
and t ∈ [−1, 0] =⇒ f(t) ≤ a− t

a+ 1
. (7)

Considering the sign of cos θ, we may now compare (5) and (6) via (7), to see that

if θ ∈
[−π

2
, π
2

]
, then (r, θ) ∈ Ds(u) =⇒ (r, θ) ∈ L ⊂ BX ;

if θ ∈
[
π
2
, 3π

2

]
, then (r, θ) ∈ Ds(u) =⇒ (r, θ) ∈ −L ⊂ BX .

Therefore Ds(u) ⊂ BX , as desired. This argument is illustrated in Figure 5(b).
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Quarter-turn symmetry. We now return to $, to expand upon [3, Proposition 3],
which states that $(X) ≥ π whenever iX = X (this means that pushing forward by
a quarter-turn does not change lengths). Recall that iX = X if and only if iBX = BX
(i.e.,BX has quarter-turn symmetry). We begin with a crucial lemma, which compares
lengths under such a norm to the measures of Euclidean angles.

Lemma 4.3. Fix any norm X ∈M with iX = X .

(a) Suppose that v 6= 0 and p, q ∈ `v are distinct. If θ denotes the angle measure
between the vectors p and q, then we have dX(p, q) > θ · ||v||X .

(b) If ϕ is a path along ∂BX that sweeps out an angle of θ (centered at the origin),
then lenXϕ ≥ θ. Ifϕ is a polygonal path (and not just a point), then lenXϕ > θ.

Proof. The main argument in this proof follows that of [3, Proposition 3] very closely.
(a) We first consider the Euclidean geometry. Define r = |p|, s = |q|, b = |p− q|

and h = |v|, as shown in Figure 6(a). We have bh = rs sin θ, because both sides
equal twice the area of40pq. By the law of cosines in the same triangle, we also have
b2 = r2 + s2 − 2rs cos θ. Notice that t+ 1

t ≥ 2 for all t > 0. Therefore, we have

b

h
=
b2

bh
=
r2 + s2 − 2rs cos θ

rs sin θ
=

r
s + s

r − 2 cos θ

sin θ
≥ 2− 2 cos θ

sin θ
.

Since p and q are not parallel, we have θ < π. The tangent half-angle formula gives

b

h
≥ 2− 2 cos θ

sin θ
= 2 tan(θ/2) > θ,

where the last inequality follows because tan t > t for all 0 < t < π/2.
Now, we must consider length in terms ofX. Since p, q ∈ `v, we have p− q = tiv

for some t ∈ R. For any norm Y ∈M with iY = Y (e.g., X or `2), it follows that

||p− q||Y = ||tiv||Y = |t| · ||v||Y .

This allows us to translate the result for `2 to any norm X with iX = X:

||p− q||X = |t| · ||v||X =
|p− q|
|v| · ||v||X =

b

h
· ||v||X > θ · ||v||X .

(b) First suppose that ϕ = [p, q] with p 6= q. Let ` denote the line through p and q.
Because [p, q] ⊂ ∂BX , Lemma 3.7(c) states that ` ∩BX is a face of BX . Moreover,
since ` ∩BX is a proper face of BX , we have ` ∩BX ⊂ ∂BX and thus ` ∩B◦X = ∅.
In particular, this shows that 0 /∈ `, so we can write ` = `v, where v is the unique point
along ` of minimal `2-norm. Since v /∈ B◦X , we have ||v||X ≥ 1. Therefore (a) gives

lenXϕ = dX(p, q) > θ · ||v||X ≥ θ.

This proves the desired result whenever ϕ is a line segment. Since lengths are additive
under concatenation of paths, we also get the desired result for any polygonal path.

In proving the general case, we may assume that θ < π (by the additivity of length).
Then if ϕ goes from p to q, the angle θ swept out by ϕ is the angle between the vectors
p and q (which is unchanged if p or q is scaled by a positive number). Fix some ε > 1.
We wish to find some norm Y ∈ M, such that the unit ball BY is a convex polygon,
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Figure 6. Lengths in terms of a norm X such that iX = X .

iY = Y , and BX ⊂ BY ⊂ εBX . Let x0, x1, x2, . . . ∈ ∂(εBX) be a dense sequence.
ThenBX ⊂ conv{xn : n ∈ N}◦ and thus the sets Un = conv{x0, x1, . . . , xn}◦ form
an open cover of BX indexed by n ∈ N. Since U1 ⊂ U2 ⊂ · · · and BX is compact,
there exists some n ∈ N with BX ⊂ Un. Then we define Y by its unit ball

BY = conv{axk : k = 0, 1, . . . , n and a = ±1 or ± i}.

This is clearly a convex body with quarter-turn symmetry and BX ⊂ BY ⊂ εBX .
There are unique p′ ∈ ∂BY ∩ [p, εp] and q′ ∈ ∂BY ∩ [q, εq], which we can write

as p′ = sp and q′ = tq, for some s, t ∈ [1, ε]. Let ψ denote the shorter path along
∂BY from p′ to q′. Notice that ψ also sweeps out an angle of θ and BY is polygonal,
so the above case gives lenY ψ > θ. Then ψ ≺ [p′, εp] • εϕ • [εq, q′], where the latter
is a convex path because it is a part of the boundary of {tv : t ∈ [0, ε] and v ∈ ϕ}.
These convex paths are illustrated in Figure 6(b). Since p′ ∈ [p, εp], we have

dY (p′, εp) ≤ dY (p, εp) = (ε− 1)||p||Y .

We analogously have dY (q′, εq) ≤ (ε− 1)||q||Y . By Lemma 2.3(a), we then have

θ < lenY ψ ≤ lenY
(
[p′, εp] • εϕ • [εq, q′]

)
= dY (p′, εp) + dY (q′, εq) + lenY (εϕ)

≤ (ε− 1)
(
||p||Y + ||q||Y

)
+ lenY (εϕ).

Since BX ⊂ BY , we have lenX ≥ lenY and || · ||X ≥ || · ||Y . Therefore,

ε · lenXϕ ≥ ε · lenY ϕ = lenY (εϕ)

> θ − (ε− 1)
(
||p||Y + ||q||Y

)
≥ θ − (ε− 1)

(
||p||X + ||q||X

)
.

Taking the limit as ε→ 1 yields the desired inequality lenXϕ ≥ θ.

This lemma carries most of the burden of proving that $(X) ≥ π when iX = X ,
as well as classification of the equality case. But the condition iX = X is not ideal,
in that it is not preserved under linear equivalence (consider ellipses). Thus we define

Q = {Y ∈M : Y is linearly equivalent to some X ∈M with iX = X}.
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ThenQ is obviously closed under linear equivalence, so it provides a “coordinate-free”
notion of norms with quarter-turn symmetry.7 With this notion in hand, the quarter-turn
symmetry results can be extended toQ, giving a characterization of E in terms of $.

It should be noted that the inequality in Theorem 4.4(a) is from [3, Proposition 3].
However, the equality case is of my own invention, at least by this method of proof.8

Theorem 4.4. (a) For any norm X ∈M such that iX = X , we have $(X) ≥ π.
Moreover, we have $(X) = π if and only if X is a positive multiple of `2.

(b) We have $(Q) = [π, 4] and E = {X ∈ Q : $(X) = π}.
Proof. (a) Note that $(X) ≥ π follows at once from Lemma 4.3(b) with ϕ = ∂BX ,
which sweeps out an angle of θ = 2π. If X is a positive multiple of `2, then X ∈ E
and thus $(X) = π. Conversely, now suppose that X is not a positive multiple of `2.
By the contrapositive of Lemma 4.2, there exists some v ∈ ∂BX with `v ∩B◦X 6= ∅.
Because the line `v intersects the interior of BX , it must intersect the boundary ∂BX
in at least two points, so there is some u ∈ `v ∩ ∂BX with u 6= v. Let ϕ and ψ denote
the shorter and longer paths along ∂BX from u to v, respectively. If θ is the angle
formed by u and v, then ψ sweeps out an angle of 2π − θ. It follows that

lenX(∂BX) = lenXψ + lenXϕ ≥ 2π − θ + dX(u, v) > 2π − θ + θ = 2π

by Lemmas 4.3(b) and (a). Therefore, we get the strict inequality $(X) > π.
(b) If Y ∈ Q, then Y is linearly equivalent to some X ∈ M such that iX = X,

so $(Y ) = $(X) ≥ π by Lemma 3.3 and (a). Since the upper bound of $(Y ) ≤ 4
was already established in Theorem 3.5, we have$(Q) ⊂ [π, 4]. To show the reverse,
notice that `p has quarter-turn symmetry for all p ∈ [1,∞]. We know that $(`2) = π
and $(`1) = 4, so the intermediate value theorem implies that

[π, 4] ⊂ $
(
{`p : 1 ≤ p ≤ 2}

)
⊂ $(Q).

This uses the fact that p 7→ `p 7→ $(`p) is a composition of continuous functions,
whereM is given the structure of a metric space by measuring the Hausdorff distance
between unit balls. The continuity of p 7→ $(`p) can also be directly observed from
an integral formula found in [1]. Either way, we omit the details.

We already know that `2 ∈ Q and $(`2) = π. But since {X ∈ Q : $(X) = π}
is closed under linear equivalence, this implies that E ⊂ {X ∈ Q : $(X) = π}.
Conversely, consider Y ∈ Q with $(Y ) = π. Then Y is linearly equivalent to some
Z ∈Mwith iZ = Z.We have$(Z) = $(Y ) = π by Lemma 3.3, soZ is a positive
multiple of `2 by (a). Hence, Z is Euclidean and therefore Y is Euclidean as well.

Radon norms. In this final section, we will recount one more result without proof,
providing an interesting parallel to Theorem 4.4. Recall that the relation of Birkhoff
orthogonality is not generally symmetric. In fact, if X is a norm on Rn with n ≥ 3,
then

X̀
is symmetric if and only if X is Euclidean [12, Theorem 3.4.10]. The situation

differs in two dimensions, where there are many such norms that are non-Euclidean:

Definition 4.5. A norm X ∈ M is said to be Radon if the relation
X̀

is symmetric.
We will writeR to denote the set of all Radon norms on R2.

7A more coordinate-free definition is X ∈ Q if and only if SX = X for some S ∈ GL(2,R) of order 4.
8The inequality in Theorem 4.4(a) is also proved in [6, Theorem 5], in part, using an inequality from [5].

While it is not mentioned in [6], the main result of [5] also includes an equality case, which can be combined
with [6, Theorem 5] to yield an alternative proof of the equality case in Theorem 4.4(a).
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Figure 7. A linearly regular hexagon is the unit ball of a Radon norm.

Going back to the definition of Birkhoff orthogonality, we can see thatR is closed
under linear equivalence and E ⊂ R. To see that Definition 4.5 is not just an alternative
characterization of Euclidean norms, we now return to one of our central examples:

Example 4.6. Consider a norm whose unit ball is the linearly regular hexagon

H = conv{u, v, v − u,−u,−v, u− v},

where u, v ∈ R2 are linearly independent. To show that this norm is Radon, it suffices
to prove that ` is a symmetric relation for vectors in the boundary ∂H. There are two
cases to address, in order to understand the relation of orthogonality in this norm:

• A point w lying in the interior of an edge clearly admits only one supporting line.
Translating this line to the origin, we find exactly two points x ∈ ∂H with x `w,
both of which are vertices of H . For example, if w ∈ (v, v − u), then x = ±u.

• A vertex x admits many supporting lines. These lines are precisely those that sweep
out the “double wedge” region formed by extending the edges out from x, as shown
in Figure 7. If we translate x to the origin, this “double wedge” then intersects ∂H
precisely in the edges that don’t contain ±x. For example, if x = u and w ∈ ∂H,
then w `x if and only if ±w ∈ [v, v − u].

Combining these two cases, we can observe that ` is indeed a symmetric relation.

This example shows that Radon norms can have$ = 3 or π, so it seems reasonable
to expect that they would assume all pi-values between these two. In fact, this interval
of [3, π] comprises all of the possible pi-values that are assumed by Radon norms:

Theorem 4.7. We have $(R) = [3, π] and E = {X ∈ R : $(X) = π}.9

The reader should note a striking similarity between this result and Theorem 4.4(b).
Since norms with quarter-turn symmetry have been studied far less than Radon norms,
this resemblance raises the question of whether other results about R (for examples,
see [2] or [9]) have some sort of analogue concerning Q. I would be thrilled if this
article prompts any such exploration.

To situate this relationship, a certain viewpoint may be useful. We have frequently
written iX = X to denote the condition of quarter-turn symmetry, and more generally,
a norm is in Q if and only if it is “compatible” with some complex structure on R2.
Martini and Swanepoel have described an elegant framework for Radon norms in [9],

9The accessible survey [2] gives a lovely account of some aspects of the theory that we have totally ignored,
and contains the original references for this result, which is quoted therein as Corollary 4. This result is also
discussed in the more comprehensive survey [10], where it is Proposition 48.
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which essentially says that a norm is in R if and only if it is “compatible” with some
symplectic structure on R2. We have utterly ignored notions of duality in this article,
but a norm and its dual are often viewed in the same plane by way of an inner product.
Considering the trinity of complex, symplectic, and Euclidean/Riemannian geometry,
it would not be surprising for these structures to exhibit some interplay. We can already
see one such result as a straightfoward corollary of the related theorems onQ andR:

Corollary 4.8. If X ∈ M is Radon and has quarter-turn symmetry (in some basis),
then X is Euclidean. Stated more compactly, we haveQ∩R = E .
Proof. Theorems 4.4 and 4.7 give π ≤ $(X) ≤ π, so $(X) = π. Then the equality
case of either theorem implies that X is Euclidean.
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