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Hilbert’s 15th Problem

In the later 1800’s, mathematician Hermann Schubert posed a problem:

Given four generic lines in 3D space, how many other lines intersect them?

To give an answer of 2, he used the non-rigorous principle of conservation
of number, which states that the number of solutions (usually) does not
depend on the particular initial conditions. In his famous 1900 address,
David Hilbert asked that this solution be given a rigorous basis. This came
about through study of spaces called Grassmannians, such as the space
Gr(2, 4) of lines in 3D space. Given ` ∈ Gr(2, 4), we define the subspace
X` ⊂ Gr(2, 4) of lines intersecting `. Schubert’s problem considers generic
`1, `2, `3, `4 ∈ Gr(2, 4) and asks that we show #(X`1∩X`2∩X`3∩X`4) = 2.

Fig. 1: The two solutions for Schubert’s special arrangement of four lines.

The modern approach solves this counting problem via an algebraic object,
called the cohomology ring H∗(X) of the space X . In particular, we study
certain elements of H∗(Gr(k, n)), called Schubert classes. These classes
form an additive basis for the ring, indexed by diagrams of boxes that fit
inside a k × (n− k) grid (X` corresponds to a single box ). The counting
problem then becomes to find the coefficients cσµλ in [Xµ] · [Xλ] =

∑
cσµλ[Xσ].

X ·X ·X ·X =
(
X + X

)
·X ·X

=
(
X + X

)
·X = 2 ·X

Gelfand-Zetlin Polytopes

For reals λ1 ≥ . . . ≥ λn, the Gelfand-Zetlin polytope
GZn(λ1, . . . , λn) lies in a space of dimension n(n − 1)/2,

with coordinates λ
(j)
i for 1 ≤ i ≤ j and 1 ≤ j ≤ n − 1.

The Gelfand-Zetlin polytope is cut out by the inequalities

λ
(j+1)
i ≥ λ

(j)
i ≥ λ

(j+1)
i+1

(with λ
(n)
i = λi). These defining inequalities are organized

schematically in the triangular diagram shown in Figure 2.

This polytope comes from the representation theory of the
general linear group GL(n). A sequence of integers
λ1 ≥ . . . ≥ λn corresponds to an irreducible representation
of GL(n). The lattice points contained in GZn(λ1, . . . , λn)
corresponds to a natural basis of this representation.
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Fig. 2: The defining pattern of the Gelfand-Zetlin polytope.

The Khovanskii-Pukhlikov Theorem

Fig. 3: Analogous polytopes (figure credit to Marzena Szajewska).

There is a theory that corresponds spaces called toric varieties
with certain “nice” polytopes. In 1992, Khovanskii and Pukhlikov
defined the polytope ringRP given by a polytope P and proved
that RP

∼= H∗(XP ), where XP is the toric variety given by P .
Later, it was shown that the elements of RP correspond to faces
of P , with multiplication in RP given by intersections of faces.

The Grassmannians are quotients of a more complicated space,
the complete flag variety Fl(n), the cohomology of which
is also important to Schubert’s enumerative geometry. Although
Fl(n) is not a toric variety, Khovanskii and Pukhlikov constructed
an isomorphism RGZn

∼= H∗(Fl(n)), showing that this polytope
ring facilitates computations in Schubert calculus. But on its own,
GZn is not“nice”enough that RGZn may be described by its faces.

Smooth Resolutions

A d-dimensional polytope is said to be simple
if d edges meet at each vertex. Such polytopes
are the best understood: the ring of a simple
polytope can be described by the combinatorics
of its faces. The 3D GZ-polytope is not simple,
as seen in Figure 4 (left). But there is a related
simple polytope, called a smooth resolution,
pictured in Figure 4 (right). The polytope rings
of the two are related, so the cohomology ring
H∗(Fl(n)) ∼= RGZn may be studied through
the combinatorics of this smooth resolution.

Fig. 4: Resolution of the 3D Gelfand-Zetlin polytope [KST12].

The existence of such a resolution is guaranteed
by the theory of toric varieties, but we would
like to present a concrete construction, which is
useful for computations. Just as with GZn(λ),

the resolution lies in R
n(n−1)

2 . To defineGZres
n (λ),

we replace the inequalities of Figure 2 by

λ
(j+1)
i + ε(j) ≥ λ

(j)
i ≥ λ

(j+1)
i+1 ,

for fixed ε(1) > · · · > ε(n−1). These resolutions

are combinatorially equivalent to hypercubes,
and we conjecture that the corresponding toric
variety is comparable to a Hirzebruch surface.
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