Introduction to Mathematical General Relativity—lectures

given by Rick Schoen

Notes taken by Xin Zhou

Abstract

This series of lecture notes were taken for the topic class on mathematical General Relativity
given by Professor Rick Schoen in the spring quarter of 2012 at Tsinghua University. These lec-
tures start from basic introduction of General Relativity, and then move on to several fundamental
mathematical subjects in this field. Particularly, the notes cover the conformal method of solving
the vacuum constraint equations, Positive Mass Theorems and the Penrose Inequality. The mate-
rials are very good examples for the application of methods from partial differential equations and
calculus of variation.

It is likely that we have numerous typos and mistakes here and there, and would appreciate it

if these are brought to our attention.
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1 Introduction

Reference:

e R. Wald. General Relativity.

e S. Hawking and G. Ellis, The Large Scale Structure of Space-Time.
1.1 Mathematical model

(S™*1, g, other fields) is used to model the space-time, where S™*! is an n+1 dimensional smooth

oriented manifold, g a Lorentz signature (—1,1,--- , 1) metric, and other fields are models by tensor
——

fields.
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Flat model: R™!:

® 10,x1, - , T, are coordinates;

e g= —dx% +> 0 d:r? is the Lorentzian metric;
n

o (v,w) = —vowg + ;| Viw;.

[ ]

space-like: (v, v) > 0;
3 types of vectors: ¢ time-like: (v,v) < 0;
null:  (v,v) =0.

e Time-like curves are used to model the World line;

Let H® C R™"! be a plane, then there exists a unique v # 0 up to scale, such that H = {w :
(v,w) = 0}.

e H is space-like if v is time-like, then g|z has positive signature;
e H is time-like if v is space-like, then g| has Lorentz signature;

e Hisnullifv € H and (v,v) = 0, then g| is degenerate.

Let M™ C R™*! be a hyper-surface, then it is space-like if T, M is space like for all p € M.
Let D be the Levi-Civita connection on (S"*1, g), and {® : @ = 0,--- ,n} local coordinates,
with 9, = 7% Then Dy, 9 = > 1 T'¢, Oc, where the Christoffel symbol ¢, = 2°4(gaa + gav.a —

Jab,d)- Given X, Y, W, Z € T,S, the Riemannian curvature tensor R(X,Y, Z, W) is defined in local

coordinates by:

R(aa, ab, 8(:; 8d) = Z ga@Rng?

where R}, = ngﬁ — ng’ gt -I'—T-TI. The Ricci curvature is R, = chd ngRacbd, and
Scalar curvature is R = ) ab gabRab.

1.2 Einstein equation
The Einstein equation is given by
Rap — %Rgab = Tap, (1.1)
where T is the stress-energy tensor of matter fields. The questions related to matter fields are:

e What does 1" mean?

e How to compute 7?7

Given v a time-like unit vector (v, v) = —1, then
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e T'(v,v) is the observed energy density of observer;

e T'(v,-)! is energy-momentum density vector.

Standing Assumption on 7'—Dominant Energy Condition(DEC):

Vv unit time-like vector = T'(v, -)jj is forward pointing time-like or null. Givenv = eg, e1, - - -

an o.n. basis, and let T, = T'(eq, €p), then (DEC) requires Too > 1/ Y iy T()Qz"

Special Case: 7" = 0, in dimension n > 2, then (1.1)) is reduced to
(VEE) R, = 0.

Proof: g®° (R, — %Rgab) =R - ”THR =0=—=R=0.
Lagrangian formulation: The associate Lagrangian is:

Laplg) = / Rdv = / 4% R/ det(g) da.
S S

Claim: consider a variation g + th where h is compactly supported, then

d 1
) oup(q +th) = / Y

S

7€TL

(1.2)

(1.3)

Proof: By [2]], the first variation of scalar curvature is 64 R(h) = §6h — Ric - h, so the first variation of

EHE is
5yLrrp(h) = / (8,R(h))v/~ det(g)da + R(5,y/~ det(g)(h))da
S
= / [(66h — Ric - h)+/—det(g) + R%trgh\/ — det(g)]dx
S
1 ab
= [_Rab + 7Rgab]h d’U,
S 2

where in the third “ = ” we used the divergence theorem.

Gravity coupled with scalar fields: Let u be a function on S, the Klein-Gordon action is

Lrc(u,g) = /S (Vu, Vi + m2u?))dv,

The first variation equation is:

d

Sli=oLia(u+n,g) = /S(<Vm Vu) +m*u?)dv =0, V€ C2(S).
Hence the Euler-Lagrange equation for w is:

—Ou +m?u? = 0.

(1.4)
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Now the total action for (u, g) is

Liotal(u, 9) = Lar(g) + cLra(u, g).

And the first variation is given by:

1
6g£total(uag) = _/(Rab - §Rgab)habd’l) + C/ Tabhabd'l),
S S

where the Energy-Momentum tensor corresponding to w is given by

/ Toph™dv = 6,L1c(u, g) = d, / (9% uquy, + m*u?)\/—det(g)dzx
S S

1
= /[—h“buaub + (|Vul* + m2u2)§trgh]\/ —det(g)dzx.
S

So the total Euler-Lagrangian equation for g is

1 1
Rap — §R9ab = Tup = —Uuqup + §(WU|2 + m*u?)gap.

1.3 Initial value problem

The initial data is modeled by a triple (M™, g, h), where g is a Riemmanian metric, and h a
symmetric (0, 2) tensor.
Problem: Given initial data, find a local evolution (S"*1, g¥) of VEE(1.2), with

McS, g=¢%u, h=2ndf.f

e The problem is solvable only if (g, h) satisfies (n + 1) constraint equations;

e The constraint equations are given by R, — %Rgab = Ty, when a = 0.
The constraint equations are given by:

Too = o = 5 (R + (trgh)* — |h|?),

CFE 1.5
( ) { TOi = J = divg(h — (t?"gh)g). ( )
The vacuum constraint equations are given by:

0=1(R+ (tryh)* — |n|?

0 = divg(h — (trgh)g).
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2 Constraint equations

2.1 Derivation of (CE)

Given (S™*1, g5) the space-time, let (M™, g, h) be the initial data set, such that (g, k) are the
restriction and 2nd f.f. of M C (S™*!, ¢°). Take {eg, €1, - - ,e,} an o.n. frame of S at p € M, with
eo L M and e; € T),M. Consider the Einstein equation

1
Rab - §Rg<5 = Lab 0 < a, b <n.

e a=0,b=0= (1) p =Ty = (Ry + (trgh)* — |]*);
e a=0,b=1,--- ,n=(2) J =Ty = divg(h — (tryh)g).

(1) Gauss Equation: M C S, X,Y, Z, W € TM,
RM(X,Y,Z,W)=RS(X,Y,Z,W) + (II(X, Z),II(Y,W)) — (II(X, W), IL(Y, Z)),
where I1(X,Y) = (DxY)* = h(X,Y)eo. Plugin e;, ej, ek, el
R}y = RS — hichji + hahjy,.

Summing over ¢, k and 7, [ respectively,

Z Rz]z] Z Rz]zg 757’19 + ||h||2

i,j=1 i,7=1
Now
1
Z R’L]Z] Z Rz]zg 2 Z RO’LO% +2 Z RO’LO’L = - §ng(3g0) = 2Tp0 = 24
=1 =1
= L,j= o
=RS =2R§,

Plug in back, we can get the first constraint equation.
(2) Codazzi Equation: M C S, X, Y, Z € TM,

RS(eg, XY, Z) = (DyII)(X, Z,eq) — (DZI)(X, Y, ),

where I1(X,Y,v) = (DxY,v), hence II(X,Y,e9) = —h(X,Y). Plugin X = ¢;, Z = ¢; and sum
over 1,
n
J(Y) = R%(eq,Y) =Y R%(ep,e;, Y, €;) ZD (e, Y) =Dy (tryh)
i=1 M
divgh(Y')

= divg(h — (trgh)g).



2 CONSTRAINT EQUATIONS

The (VCE) system for (M, g, h) when n = 3:

{ (R + (trgh)® = [h]*) =0,
divg(h — (trqh)g) =0,

has 4 equations and 12 unknowns, so it is underdetermined system. We are mainly interested in the

following two cases: (1) M compact; (2) M asymptotically flat.

2.2 Conformal method

Given (M 39,0, T), where g is a given conformal class of metrics; o is a trace-free and divergence

free symmetric (0,2) tensor, i.e. divo = 0, trqo = 0; and 7 is the prescribed mean curvature.

Consider the conformal transformations:

{ g=¢'9, ©>0,
h=¢ %o+ LW)+1g,

where ¢ is a function and W a v.f.(vector field). L is defined as follows,

Definition 2.1. L is the conformal Killing operator,

1 2
LW = Lwg — gTT(CWg)g = D;W; + D;W; — gdiv(W)g.

2 Conformal formulae:

. _ 1
(1) R(g) =—-8p " (Ngp — g ftaP);
(2) LgW = " LW, divg(p~ k) = ™ °divg(k),

where £ is a trace-free symmetric (0, 2) tensor.
Check (2):
LW = Ly g + trace term = ©* Ly g + trace term.

So by taking trace-free parts = LW = <p4LgW.

2.1)

(2.2)

To show the second part of (2), we can use duality properties. Given k a trace-free symmetric

(0, 2) tensor, and W a vector field, then by integration by part
1

/ (divgk)(W)dpy = —/ kij D W'dp = —/ (k, LyW)dpg.
M M 2Jm

Hence we have shown that,

Lemma 2.2. The operators Ly and —2divy are conjugate w.r.t. L*(M, g).
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So divg (¢~ 2k) (W) = ¢~ Sdiv, (k)(W).

We want (g, h) in (2.1) to satisfy the (VCE). By plugging (g, k) into (1.6), we get

Np — %Rggo = %7’2 5 _ %|0 + LW o7,

(Conformal VCE) { ) 2 6
divg LW = $p°dr.

(2.3)

e By plugging in the conformal formulae to the first one in (I.6), we can get

_ 1 _ 72
=80 (Bgp = SRyp) + 77 = [l (o + LW — 5 =0,
hence the first formula above.

e By plugging in the second one in (1.6), we can get

T

2
divg(p2(c + LW) + =g — 79) = ¢ Odivg(LW) — ng =0.

w

(x) Find solution of (VCE) reduces to finding solution of (2.3).

2.3 CMC case

By CMC (constant mean curvature), we means

7 =const, hence W =0,

which is a solution to the second one in (2.3). Then (2.3)) is reduced to the Lichnerowicz equation:

1 1 1 _
“Ryp=—T12p" — §]a|24p T, (2.4)

(CMC VCE): Ap — 3 B

Definition 2.3. M3 is compact, and g is a metric. We say g is

e Y, > 0(Yamabe positive) <=> 35 € [g], Ry > 0 <= Ly = A — { Ry has \; > 0;
e Y, = 0(Yamabe zero) <= 37 € [g], Ry = 0 < L1 = A — { Ry has \; = 0;
e Y, < O0(Yamabe negative) <= 37 € [g], Rg < 0<= L1 = A — %Rg has A\; < 0.

Here A, is the first eigenvalue of the conformal laplacian operator L.
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In the following table, we list all the existence results in the CMC case:

c0=0,7=0|0=0,7#0|0#0,7=0 |0 #0,7#0
Y>0 No No Yes Yes
Y =0 Yes No No Yes
Y <0 No Yes No Yes

Regularity issue: we assume g € WP(M), h € WHP(M) for p > 3. The first one in VCE =
R, € WhP(M).
Sub-super-solutions: On (M, g) compact, consider the equation

(*) T(u)=ADgu+ f(z,u(z)) =0.

Want: solve with u € W3P(M). Assume

Juy € W3P(M),uy >0, T(uy)<O0;
Ju_ e W3P(M),0<u_ <uy, T(u_)>0.
Denote m_ = inf s w1, m4 = sup,; uy. Assume further that
1 of 0 1 : 1
FiM o fme,mi] = RY £ 2L e OO x [moymy)), flwul@)) € W), it w e W),

The vy and u_ are called sub-solution and super-solution respectively.
Theorem 2.4. Under the above assumption, 3 u € W3P(M) with T(u) = 0, and u_ < u < uy.

The proof will be given in

2.4 Find sub-super-solutions for (2.4) when o # 0 and 7 # 0

Let . ) )
T(u) = Au — éRu — ETQUS + glalzu_7, u > 0.

Y, > 0: we can assume R > 0 since Y,; > 0.

e Super-solutions: let u, = C' for C' > large enough, then

1 1
T(uy) = —gRC e O
—_——

12

Dominant part

1
+§|O'|20_7 < 0.
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2 since R > 0, A\ — %R is invertible

e Sub-solutions: Firstly solve Av — %Rv = §o7?% — é|a
hence the equation is always solvable. When dg = 0, It has a positive solution by the maximum

principle. By the continuity, there exists Jp > 0 small enough = v > 0.

Set u_ = ev, then when ¢ is small enough depending only on the positive lower bound of v,
1 1 1
T(u_) = dor2e — ET265U5 — g\al% + §]0|2e_7v_7
= 72(Jpe — i65 ) — }’0’2(6 —e ) >0
12 8 ——
<0
>0
Y, <0:
e Super-solutions: u = large constant works similarly as above;
e Sub-solutions: Take Ag > 0 such that Ag + éR > 0, then solve
1 1
Av — ng — Agv = dp7* — §|a|2,
for small enough §y. Similarly as above, u_ = ev works as a sub-solution when ¢ > 0 small

enough.

2.5 Find transversal and trace-less symmetric (0, 2) tensors

Given (M3, g) compact Riemannian manifold, we will talk about how to find trace-less and diver-

gence free symmetric (0, 2) tensors.
Definition 2.5. Given p > 1, denote

Ao, = the set of all W2P vector fields on M:;

T1,p = the set of all WP trace-free symmetric (0, 2) tensors on M.

The conformal Killing operator L defined in Definition [2.1]is then a bounded operator
L: sz — 7-171,.

o ¥ = —2aliv;§E by Lemma where L* is the L?(M, g) adjoint operator for L and w? is the
dual vector field for any w 1-form.
o L*oL : X, — Ay is a self-adjoint(w.r.t. LQ(M , 9)) and elliptic operator(which will be shown

later).
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ker(L* o L) = kerL = {conformal Killing v.f.}.

This comes from:
0= / (L* o LW, W)du = / | LW |*dy = LW = 0.
M M
o If No conformal Killing fields, then
L*o L : Xy ), — Xp, is an isomorphism.

Generally,
L*o L : ker(L)* — Xy, is an isomorphism.

e Vke T, L'k € XopN (kerL)-(L*k € (kerL)!: comes from the duality property). Then
FIW € Xy, N (kerL)*, with L* o LW = L*k. Then

k=LW + o,

where o = k — LW is transversal, i.e. divgo = —3L*c = —1L*(k— LW) = 0, and trace-less

since both k and LW are trace-less. Clearly LW and o are orthogonal w.r.t. L?(M, g), since
/ (LW, o)dpu = / (W, L*o)dp = 0.
M M

Hence we have proved the following decomposition proposition,

Propostion 2.6.
Tip =TT @1 L(Xop),

where 7Ty, is the set of transversal(divergence free) and trace-less WP symmetric (0,2) tensors,
and the decomposition is L?(M, g) orthogonal.

Now we are left to check that L* o L is elliptic.

1
L*oL = —§dw# oL.

e Take normal coordinates {z!, 2%, 23} atp € M, and W = W ag,- € X*°(M), then

2
(LW)ij = Wij+ Wi — 3(2 Wi.i)dij,
hence

2 1
div(LW); = Wi 35+ Wi — EWka =W + ng,ji + lower order terms(l.o.t.)
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e Now let us calculate the symbol of div(LW). Take & € R3, £ # 0, then then symbol is
1
Te(W)i = [€*Wi + 364 W

To check that T¢ : W — T¢(W) is nontrivial for £ # 0, we assume 7¢ W = 0, then
1
D Te(W)igi = [E°W - & + S[¢fW € =0,
i

hence = W - £ = 0, hence T¢W = |¢|*W = 0, = W = 0. So T is nontrivial, and + o L is
elliptic.

2.6 Proof of Sub-super-solution method

Proof. (of Theorem[2.4) Take A > 1, and rewrite 7" as

T(u) = (Au— Au) + F(z,u(x)),

=Liu

0
where F'(z,u(z)) = Au+ f(x,u(x)). We can chose A such that g—fz = A+ a—ic > 0on M x[m_,my],
and clearly L, is invertible.
Take up = uy € W3P(M), and inductively u;q = —L;* (F(x,u;(x))). Then we claim that we
can repeat this induction for all 4, u; € W34(M) for all ¢ > 1 and

())i: wo>up > > U > Uiy > U

Proof: To repeat this induction, we only need m_ < u; < my. This follows from (x);. When ¢ = 0,
ug = u4 satisfies all the property. Assuming u; € W3"1(M) and (x);, i.e. u;—1 > u; > u_, we show
uU; > Uit-1 > u_ and U1 € W3’q(M).

e Since u; € W34(M) and m_ < u; < my, f(z,u(z)) € WhHI(M) for all ¢ > 1 since
f,0f € CO%(M x [m_,my]), hence F(z,u(x)) = Au + f(x,u(z)) € WH4(M). The elliptic
regularity tells us that u; 1 = —L; " F(x, u(x)) is well-defined and lies in W39(M).

e Using 0,F > 0,

Lyu; = —F(x,uj—1) < —F(z,u;) = Liuit1,

— Li(u; —uiy1) < 0= wu; — uj+1 > 0 by Maximum Principle.

Liuiyy = —F(z,u;) < —F(z,u_) < Liu_,

— Ll(ui_H — U_) <0= Ujtr1 — U— > 0.
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Using property (*); and elliptic regularity for Liu; 41 + F(z,u;) = 0, we know u; have uniform
W34 — norms for any ¢ > 0. So the compactness tells us that u; — u € W3P(M) for the given
p>1,and

Liuip1 + F(z,u;)) =0 — Liu+ F(x,u(z)) = 0.

2.7 Non-CMC cases 1

Given free data (M, g, o, 7) with M compact, we want to solve the Conformal VCE (2.3)). In terms of

u, the conformal VCE can be rewritten as:

Au — %Rgu = %72u5 — %Ha + LW|2u7,

VCE
( ) { divg LW = §u6d7'.

e Extension of Sub-super solutions:

Assume: (M, g) has no conformal-Killing v.f. then L* o L = —2div, o L is an isomorphism
— 2
Given u, there exists a v.f. W, such that div, LW = §u6d7'.

e Now consider the operator:

1 1 1
T(u,W) = Au— §R9u - ET2UB + §||0 + LW||?u".

Definition 2.7. u, > 0 is a global super-solution, if

T(up, Wy) <0, Y0<u<u,.

u—_ > 0 1is a global sub-solution, if

T(u—,Wy) >0, Vuy>u>u_.

Theorem 2.8. (M. Holst, G. Nagy, G Tsogtgerel: Arxiv:[gr-qc]0712.0798) If 3 u_ < wuy global
sub-super-solutions, then 3 v and W, solutions of the conformal VCE (2.3).

Theorem 2.9. (D. Maxwell: Arxiv:[gr-qc]0804.0874) Assume that g € W2P(M)and o, 7 € WLP(M)
for p > 3 satisfy one of the following:

1. Y, >0,0#0;

2.Y,=0,0#0,7 #0;

3. Y, < 0,39 € [g], such that Ry = —272.

If 3u, € W3P(M) global super-solution, then 3 a solution of the conformal VCE (2.3).
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Proof. (of Condition 3). Since Y; < 0, and R; = —gT if we write § = v*g with v > 0, then
1 1
Av — gRgv = 572115.
Hence VW € X (M),
1
ﬂuW3:yw+LWWM”20

Take € > 0 small enough, then
5T 5 1 2, 7
T(ev,W)=(e—¢ )E’U +§H0—|—LW|| v >0.
So ev works as a global sub-solution when € < 1 such that ev < u. O

Propostion 2.10. (D. Maxwell) If Y, > 0 and ||o||o, small enough, then 3 a solution of the conformal
VCE (@3).

Proof. Since Y, > 0, we can choose g with R, > 0. Fix ¢ > 0 small, and assume ||o ||~ < €1 (€) with
€1(€e) > 0 another small number depending on e. Want to show that u; = € is a global super-solution,
then for any 0 < u < uy

1

1
8Rg6——7' €+ = ||U—|—LVV||2€_7

T =
(€, W) 5
<—*R€+ WUW+HUVH)

Since divy LW, = %u6d7, the elliptic regularity tells us
[Wall2p < CHUGHO,p < Cé.

Since p > 3, Soblev embedding implies that |[VW,||pe < C|[W/|2p < Ceb. Plugging the esti-
mates back, T'(e, W,,) < —1Rye + 5(e1(€) + Ce'?)e~". So by taking €1 (€) small enough, we have

T'(e, W,,) < 0, hence uy = € is a super-solution. O

Propostion 2.11. (D. Maxwell) 2 ldr] ¢ :> is solvable.

“mingg 7]

2.8 Non-CMC cases 2
Proof. (Theorem Take a cutoff function £(t) € C°(R!), such that £(t) > 0, £(t) = 0 for
|t| > minps uy, and £(0) = 1. Let
Xe(t) =t+ 65(07
then x(0) = e. Define the regularized system:
(%) { Au— gRgu = £57°u° — gllo + LW[Pxe(w) 7,

2.5
divg LW = %u6d7'. 25)
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e u = 0 is a global sub-solution for (). Let

2

1 1
T.(u) = Au — gRgu - %u5 + §||a + LW||?xe(u)~".

Then T.(0) = g||o + LW|[?¢~7 > 0 for any W.

e u is a global super-solution of (), since
T.(uy) = T(uy) <0, VW solution of div LW = %quT, u < ug.
e HNT Theorem = Ju, > 0, solutions of (x), such that u. < u.
Main Estimates:(ME) If o # 0, then 3 § > 0, such that min; u. > 6, Ve > 0.

¢ (ME) = u, have uniformly bounded W?2P norms = 3 ¢; — 0, such that ue; — u weakly in
W2P hence strongly in C1< since p > 3. Similarly, W, have uniformly bounded W?2* norms,
so W, — W weakly in W2 hence strongly in C1®. So u and W are solutions of (VCE).

Proof of Main Estimates:

® Xe(u) <u-+te
® . is a super-solution:
Aue + Qeue <0,

where Q. = —$ Ry—157%ul. Since |Ry| and |uc| < |u.|+€ are uniformly bounded, max; |Qc|
is uniformly bounded. By De Giorgi-Morser iteration or estimates of integral kernel for —/A —
Q(Proposition 8 and Proposition 9 in D. Maxwell Arxiv:[gr-qc]0804.0874), we have

i >C dp.
m]\}[nus_ /Mu€ o

e Suppose J ¢; — 0, such that minys u; — 0 (u; = ue,).
e Since u; are uniformly bounden, W; have uniformly WP norm. By extracting a subsequence,
we may assume
LW; — LW in C° norm.

Hence 0 + LW; = o + LW in CV. Since

/ o+ LW |%dy = / o2 + 2w > / lol? > o,
M M M

3Q # (), Q open and @ > 0, such that ||o + LW;||?> > o > 0in Q for i > 1.
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e By integrating the equation,

2

1
/ o+ LW;||*xe(w;) ™ dp = / (—=Au; + =Ru; + T—uf’) <C.
M M 8 12

SoC > [y, llo+ LWi|*xe(us)~"dp > a fo xe(u) ™ "dp. So

cgmﬁs%gmmmmwrwﬁsd

M

MMMLMWYU

< ([ (e [ xatw) )P
M Q
Combing all the above,
C; < / widp + €| M| < Cominu; + €| M|.
M M

Hence C — ¢;|M| < Cominyy |u;], a contradiction to our assumption.

2.9 Non-CMC non-smallness

Dahl, Gicquaud, Humbert (Arxiv:[gr-qc]1012.2188) talked about the case 7 € C 1 (M)and T > 0:

Either (VCE) has a solution or 3 nonzero W satisfying:

2 d
(B.E.)  divLW = \[yLWHgT.
3 T
Here we introduce another regularization of the Conformal VCE:

() { Au— tRgu = 5725 — Lo+ LW|u™7,

2.6
divg LW = 20, (u)Sdr. (2.6)

where ®(t) is a cutoff function, such that ®5(t) = 0 fort < 0, Pp(t) = tfor 0 < t < A and
Dp(t) =Afort > A.
Now since 7 > 0, uy. = C is a global super-solution for someCs > 1 depending on A as shown

in the following inequality. Given u < u, = C, W, is always uniformly bounded in W27, Then

1 1

1
T(uy, Wy) <RC — 57205 —glo+ LW|*C~" <o.

By using the regularization as in the above section, there always exists a solution u, with 5 <

up < Cy for some dp > 0 (55 depending on A.)




2 CONSTRAINT EQUATIONS 17

Question: What is limp_,oo up =7

Blow up analysis: Let u be a large solution of (x)4, and g = u*g. Now consider a blow up of (M, g)

on the scale of ¢ > (. Our aim is to blow up the metric g at the maximum point of u, and then keep
track of the blow-up or blow-down of other free data (o, 7) and conformal data (u, W) such that the
initial data (g, h) are unchanged.

Let g(e) = ¢~ 2g. Then the scaling for the data are:

° Rg(e) = 62Rg;

o u = /2y,

o o9 = €o;

o LW =¢e2LW;
o W = eSW

o 7() =7,

Now let us take a look of the scaling:

= 2,4 (€)

g =u'g=culy —ugg(e):>u€:61/2

u;
S 9 L o (o L Y (- 21 (o, —1 (e . L
h=wu (U—i—LI/V)+§7'g:u€ (o' + LW )+§T g=u (e o+ LW )—i-ng

— 0 =¢o, 79 = rand LW = cLW;
(LW)i5 = Vi(gjpW?) + V;(gipW?) + trace term —
(LW )i = Vgl WP) + - = € 2(LW)yy3
LW© = LW = e 2L — W) = Sw.
Then the system is blowed up to

Hloe + LWV @ |2u T,

(¥)er )8dr.

{Aug— gReue = 272u 2.7)

5
divg LW = 20 15, (u

Now take p € M such that u(p) = maxys u > 1, and let

1/2 1

/" =u(p),

hence max); ue = u.(p) = 1. Now take {x!, 22 23} as normal coordinates for g centered at p, and
let 2° = ey, then
g(e) = e_Qgij(:U)dJ:id:Uj = 9ij(€y) dy'dy’ .
N——
=d;5-+0(€?) for bounded y
We claim that as A; — oo and ¢; — 0:

w;, Wi — u, W uniformly in W27

loc *
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e Bounds on W9

. 2 2 _
Idivg LW [y = |2 ¥a(w)drlly < Zuddrlly < Ce™,

— [Wllg + [LW]lg < C|W|la,p < Ce™.

Then HLEWGHE(e) = e4||eLWH§ < Ceb5 = C. So if we normalize W¢(p) = 0, then W€ is
uniformly bounded on any compact subset under the y-coordinates.

e Boundes on ¢(9:

lo @120 = *leally = loll3.

e Claim: On B! (0) with fixed R > 0,

Bifn(% : u; > 0(R), for some 6(R) > 0 depending only on R.
R

This comes from the same argument as in the above section by using the estimates for super-
solutions. The only ingredient we need to address is [p. ) |o(©) + LW ||Zedu > d(R) > 0.
R

Using Maximum Principle at y = 0, since u.(0) = maxu, Acu(0) < 0=

1 1 1
—glez 5 gl + LW —

1 1 1

éHU(G) + LW 2(0) > ﬁTg + §62R(p) >(C >0, foresmall enough.
So we get the desired esteems by using the uniform Holder norm bound of LW (©), which comes
from the elliptic regularity.

e The estimates on W (¢) and 0(6), together with the fact that 0 < §(R) < u. < 1 give uniform

bounded on u; and W; , hence the convergence.

Blow up equations on R3:

{ Au = %Tgu‘r’ — %||LW||2u_7, 2.8)
divLW = 2, (u)7y,
where 79 = 7(poo) and 71 = 30| a;dy’ = d7(peo) = aa; dz’ = g?; dy'. Moreover, u and VIV are

bounded .

3 Asymptotically flat manifold

3.1 Introduction and motivation for asymptotical flatness

(M™,g,h) is an Initial data set satisfying the (CE). Here we will briefly discuss the notion of
asymptotically flatness. Roughly speaking (M™, g, h) is asymptotically flat if outside a compact set
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K C M, M \ K is diffeomorphic to R" \ B,i.e. M \ K ~ R"\ B"™. Moreover denote {z!,--- 2"}

to be the coordinates on R™ \ B, then we assume roughly
gij(x) = 0;; + decaying terms;

hij(x) = decays as z — oc.

Compared to Newtonian gravity, we will discuss our main interests in the asymptotical flat theory.

e Newtonian Gravity: in R3. Let p > 0 be the mass density on a region €2, where p = 0 outside

(), then the gravitational potential ¢ satisfies:
Np = —4dmwp, ¢ — 0,at co.

The gravitational force is F' = Vp, while the total mass is m = fQ p, and the center of mass is
5 .
C = |, Zpd.
e We can also define mass m, center of mass C, linear momentum P and angular-momentum
J(static quantities of gravity fields) for the initial data set.
e Newtonian Case: The gravitational potential has expansion:
m a-r

+ O(|z|73).

Here m is the mass. This is because:

0
—47rm:—47r/ p= A(p:/ 90:_/ %:—47rm.
R R? 9Byoe OF OBroo

In fact, 3! C e R3, such that

_ CL‘_3
plr) = é|+0(\ ™),

where C is the center of mass(can be checked similarly by integration by parts). In fact, the first

term is the potential for point mass m centered at C.
e Schwartzchild Solution: (R™ \ {0}, g, h = 0), where

gij(x) = (1 + 72|$_2)ﬁ5ij-
=u

and w is a harmonic function on R"™ when m > 0.

R, = —%u_%g (Au) = 0, so it is vacuum.

Furthermore, it is a Static Black hole.
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,E =2 € 5" ! then

||

Letr = |z
dr? 4+ r?dg® = e*'(dt* + d&?),
where d¢? is the standard metric on S2, and r = e, with ¢ € (—o00, 00). So we can rewrite g as

9= (14 555) ™2 (dr? +1%de?)
T

—(1+ QTT_Q)ﬁ(e”T’Zt)ﬁ(dtz + de?)
= ("t 4 ) TR (df? + dE?),

2e 2
1
The minimum of the coefficient is achieved when "2 = e(*~2* = 15, /2. Hence r = ()=

corresponds a minimal surface, hence a horizon.

3.2 Mathematical definition

Definition 3.1. (M™, g, h) is called asymptotically flat (with one end), if:

e 3 K C M compact, such that M \ K is diffeomorphic to R™\ B. Let {z!,--- , 2™} be the local
coordinates given by R™ \ B.
e gc C**(M),h € CH*(M), and

n—2

5 P> and h € Wi’f_q(M).

2,
9ij = 0ij +ij, ¥ € W27 (M), ¢ >

e The mass density 1 and momentum density .J in (CE) li satisfy: p, J € CE’;‘) (M), qo > n.

Now we will give definition and show a list of properties of the weighted Soblev and Holder

spaces IV and C’g’g‘ in the following. The main references are [} 7].

Definition 3.2. The weighted Soblev norm and Holder norms are defined by

HfHWff = Hf”WQ»P(K) + (/R"\B Z (‘x|q+‘5|‘aﬁf‘)p‘x’fndx)l/p;

181<2

Ifllcoe = sup (lz*f(2)]) + [l«|""f],,
a z€R"\B

where [-], is the Holder coefficient.
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(1) Soblev embedding theorem:

sup |zl f(z)| < Cllfllyre, p>n.
ZBGR"\B —q

More precisely, we have: supy, > g | f(2)] < o(R79).

(2) Let (g — 9) € sz, p>mn,qg > "2 and Lu = Agu + Q(z)u, where Q(z) € CY and

12|2+9|Q(x)| < C with § > 0, then:

. 27p 07p 1 .
o L. WZ, — WZI;_ isabounded operator;

e If g1 € (0,n — 2), then L is a Fredholm operator of index=0;
e If ¢ € (n—2,n — 1), then L is a Fredholm operator of index=—1.

Remark: 1°: Consider the Laplacian of g: A : WE’qp; — ngﬁql. When ¢; > 0 = A,

injective, and Kernel(/\) =harmonic functions.

2°: Jou(x) € Wz’qul with g2 < n—2 such that v(z) = |x|?>~" near co; moreover fo = Asv(z) €

Wg’é’iqg, Vg3 > n — 2 since Agv(x) = 0 near co.
3% Agu = ffor f e W%:ql is not always solvable, since fj lies in WE’%’? o DUt Agu = fois

not solvable in WE’qpl. However Au = f + cfj is solvable for u € WE’ql for some constant c.
(3) Suppose L is asin (2), & Lu = f for f € Wﬂg’l withgy € (n —2,n—1),&u € Wig;, q2 > 0.
Then u(z) = a|z|>~" + vi(x) where v1 € W%qpl.

Proof:(Sketch) The equation can be rewritten as: Aju = f — Q(z)u. In fact, u € WE’qu and
12|2+9|Q(x)| < C implies that Q(x)u € WE’q’;_Q_é. Assuming g2 < n— 2(or the statement is trivially
true). Using the isomorphism A : Wz’f — W forq € (0,n—2), we know that u € Wf’qpr(;. By

—2—gq
iteration, u € Wi’qu_m;, suchthat g +nd <n—2and g2+ (n+1)d > n—2. Now Au = f —Q(x)u
is solvable in the sense that 3! v; € WE’qu_(nH)é such that Av; = f(z) — Q(z)u — cfo, where
fo = Av as in (2) with v(z) = |2|?>~" near co. Hence A(vq + cv) = f — Q(x)u, and the injectivity
of A implies that u(z) = v1 + cv(z). Now we can finish the proof by using iteration to show that

2
vy € W2, as above.

(4) Lu = Au + Q(z)u with |Q(z)| < Clz|~27%, a > 0. Ifoﬁ/Qdu < ¢ for some small ¢y > 0,
where Q_(z) = —Q(z) if Q(z) < 0and Q_(x) = 0if Q(z) > 0, then L is injective on Wz’f if
p>mnandq > "T_Q

Proof: Suppose Lu = 0 and u € Wz’f = Vu € L? since

/ Vul? = / (Va2 [[20+D) ] ~20/7) || =201 20/
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= (/(V“”w\qﬂ)pwl”dw)m(/!x\(?2<q+1>)ppz)<pz>/p,
2

where the first term is bounded by the Wz’;’—norm of u, and the exponent of the second term (?” —
2(q + 1))1)%2 < —n(can be checked by multiplying both side by p — 2) which is also bounded. Now
Ju(Au+ Q(z)u) =0, =

[1vu == [ @y < [ < ([ @i [,

, = u = 0 when ¢ small enough.

Using the Soblev inequality C'( [ u%) e

Definition 3.3. The ADM energy is:

E = — 1 m E g — Gi d{;
2(” 1 Wn 1 Rl>°°/BB o “J Y ’
the ADM linear-momentum is:

p‘zil d
el E;O/ ZW 3

where w,_1 = vol(S”‘l) andi=1,2,--- ,n.

Theorem 3.4. If (M, g, h) is as above, then the ADM energy and linear-momentum F and P exist

and are continuous in the following sense:

o (gihi) = (9, h) in Wl x Wil & [ gi =0y +[[hillyrp < Co & allcon +I1illcon <
C,— F;— Fand P, — P.

Proof. The scalar curvature has local expansion:

R = gijij — giijj + O(v,0%y) + O((87)2),

where vy = g — 4.

e R = u+ O(h?), where i ~ |z|7%, and |h(z)| < C|z|7179, hence |h?(z)| < Clx|272 <
Clz|™", since ¢ > 52 = 2 + 2¢ > n. Hence R ~ |z|7"7% § > 0 for |z| large, hence
integrable;

e Oy ~ |x|717 for |z| large, hence (0)? ~ |z|~"7%, § > 0, hence integrable;

e Since 7y ~ |z|7Y,

/ Oy, 8y)dz ~ / 12|91 de = / 127272 2425 |62 |da
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1

< (/(|x|q+2|a27|)p|;i~|1;L)l/P(/|x|(—2q—2+2)pid$)p;.

The first term is bounded by the Wz’f norm of v, and the second one is bounded since (—2q—2+
%)]% < —n(can be checked by multiplying both sides by (p — 1)). Moreover, the integration
of the last term on R? \ By decays as R, § > 0.

Using the decay estimates above, we can get:
-5
| / (914,65 — giijj)ldr < CRy°.
M\Bg,,
Furthermore, Ve > 0, given R;, Ry large enough, and using the divergence theorem,
/ (9170 — i )V dE — (9130 = gii.g v’ d€ = (9ijij — 9iijj)dz < €.
9Br, 9Br, Br,\Br,

Now the continuity of the ADM energy E comes as a corollary as follows: since (g;, hi, iti, J;)
have uniform bounded norms, we can always choose a large enough R >> 1, such that |, 9Bg (Giji —
gii,; )V’ d€ approximate E by € > 0 for all 4. Now local Wfof X Wli’f implies that the surface integral
f OBg (9iji — gim-)uj d¢ converge as ¢ — oo. Hence we get the convergence of E.

The divergence constraint can be expended locally as:

J = divg(m) = g*(mijp +7-T) = w5 + - (0m) + 7 (97).

o J ~ |z|7% hence J ~ |z|7"7%,§ > 0;
o T~ |z[7""%and 9y ~ |z|7179, hence 7 - (D7) ~ |x| 272 ~ 2|79, 5 > 0;

e Since y ~ [z|7% and Or € L”,_,~ - (97) works similarly as O(v, 0?+) term above.

Combining them together, we can get the uniform integrability of fR3\ By, Tij vJd¢. Hence the existence

and continuity of P follows similarly as E. O
We will eventually give the proof of the following famous results:

Theorem 3.5. (Positive Energy Theorem [9}[10} [L1]]) If z« > |J|, and satisfy the decay conditions, then
E > 0. Moreover, E = 0 only if the data is trivial, i.e. (M", g, h) — R™L.

Theorem 3.6. (Positive Mass Theorem [5]]) If > |.J|, and satisfy the decay conditions, then £ > | P|.
Moreover, E = |P| only if the data is trivial, i.e. (M™, g, h) < R™!,

Remark 3.7. The ADM mass m is defined by m? = E? — | P|?.

4 Density Theorems

We will talk about the Density Theorems, especially the (VCE) case, i.e. © =0, J = 0.
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41 Casenr =0

In this case, initial data set reduces to (M", g), and (VCE) reduces to R, = 0.

Definition 4.1. An asymptotically flat initial data (M™, g) has Conformally flat Asymptotics, if g =

uﬁé outside some compact set, with

Aw = 0 near oo, and u(x) — 1 at co.
Then u(x) = (1 + §|:z:\2_”) + O(|z|*=™) near oco.
Definition 4.2.

2, _
S={g: g—0€W>], R;=0}.

Theorem 4.3. There exists a dense subset of S with conformally flat asymptotics. In particular, given

g €S, € > 0,3 g with conformally flat asymptotics, with ||g — gl|,;2» < €, and |[E — E|l <e
—q

Proof. Given o >> 1, take a cutoff function ¢(r), such that ((r) = 1 for 0 < r < o, ((r) = 0 for
r>o,and [('(r)] < % ~ % foro <r < 20. Let

9ij = C(|z[)gij + (1 = C(|2) i,
in A.F. coordinates {z'}. Hence § = g in B, and § = J outside Ba,.
e Denote v = g — 9, then near oo of M™",
g—9=0C—-Dn
99 —g) = (¢ = 1)y + (6¢);
9%(9 - g) = (¢ = 1y +2(9¢)(97) + (8*C)-
Since [¢'| < %, 1" < T%,WC have
19— gHW};’ < CH'Y”WE»;(M\BU) — 0,0 — oo.
e Problem: R # 0 in By, \ B,.
Claim: [, |R|"? < Co~% and HRHWE*Q”,Q < Co~° for some & > 0.

(Coming from direct integration estimates.)
e Want to Solve:
(*) Lu=Au—c(n)Ru=0; u— 1atoo,
where ¢(n) = 4817_721).
Letv =u— 1= Lv = L(—1) = ¢(n)R, where v € WZ’;J.
Assume the following section, we have

lollyzr < 0|\R||W3,2p_1 — 0, as 0 — 00.
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e Need: L : Wz’f — ng_q isomorphism, where ¢ € (%52, n — 2).
It follows from [, |R_|"/? < .

e So v exists. Set uw = 1 4 v, then u solves ().

e Claim: v > O(u > 0 then follows from the Maximum Principal).

Let Q = {u < 0}, then €2 is compact. Solve

IAJu:O, in), wu =0, onof).

0:—/Szuf/u:/QWu\2+c(n)Ru2ZC’(/Quan?)nnz—c(n)(/ﬂur?—g)w(/gﬁg)i

> (C-9( [ w7,

= u =0.
. Setg:uﬁg,thenR:O, and g € Ssince g — § = (uﬁ —1)5€WE’5nearoo.

lg—gl <llg—all+1g—gl.
S~

small

where ||g — §|| = ||(uﬁ —1)gll < Cllu — 1]|;}2.» is small. Hence g is an approximation of g
—q

when o is large enough. The approximation of the AMD energy F by E follows from Theorem
B4

Remark 4.4. J. Corvino showed that {g € S: g = (1 + M%)ﬁé near oo} is also dense in S.

4.2 General cases 7™ # 0
Definition 4.5.
S ={(g,n): WE’; X Wi’f,q :p=0,J =0}
Definition 4.6. (g, 7) satisfy harmonic asymptotics, if outside a compact set we have
g= uﬁé, = u%(Lycs — (divsY)0),

for a function u > 0 and a vector field Y, where Ly d = Y; ; + Y.

Denote LY = Ly — (divsY)d here. Then

(divLY )i = (Yig + Yi — () Yaw)dis)y = LYz
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Remark 4.7. Since m = h — (tryh)g, trgm = (1 — n)trgh, so || 7| = ||R||> + n(trgh)? — 2(tryh)2
Hence

1
R+ (trgh)? — ||h)|> =0, <= R+ m(Tmr)2 —|I=I? =

So the (VCE) is change to

(VCE) - { R+ L (Trm)?* — ||x||> =0,

dzvgw =0.
Under harmonic asymptotics, the (VCE) is changed to

c(n)” 1Au—|—(|£Y\2 L (TrLY)*)u =0,

AY'? + ("721)u uR(LY)¥ — 2w~ Tr(LY) = 0.

(VCE) : { @.1)

Claim: using spherical harmonic expansion at infinity:

E

u(@) =1 +alz" + Ol 7"0), a=;

: —1
Yi(a) = bile " + O "), b= —=— P,

where E and FP; are the ADM energy and linear-momentum. Let us show the second one,

1
Pp=——— lim unl}/; +Y5 Yi )6
(= Dwn1 0% Jop, 4 Yo = (Vi) |
= ¢ lim a7 + by (2™ = bi(la " )edig)
T —r00 OB, | |
=c¢ lim [0;(2 = n)|z|" " + (b-2)(2 - n)i —(b-2)(2- n)i]dﬁ
M o, Eos FEs
2—n
= 1bi.

Theorem 4.8. (Corvino-Schoen) There is a dense subset of S, consisting of (g, 7) which have har-

monic asymptotics.

Proof. Take the cutoff function {(r) as in Theorem[4.3] Let

g = Clalg + (1~ C(l2)s, = C(Ja)m.

Similarly as in Theorem [4.3) we have ||§ — g|| < €, |7 — 7|| < e for o large enough. (g, 7) do not
satisfy the (VCE) only in Ba, \ B,.

Look for solutions:
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where w is a positive function, Y a vector field, and LY = Ly § — (divyY")g.

Constraint Map:

. A 2P 1p 0,p 0,p
D . W_q X W_l_q — W_Q_q X W_Q_q,

1 .
(g, m) = (Ry + m(T’Fﬂ)Q — ||7||?, divg).

Clearly, ®71(0,0) = S.

Given (g, ) € WE’;’ X Wi’ffq, u € ng’ andY € ng’, define:

4 2
T(u,Y)=®(ur2g,un1(r+ LyY)).

So T'(0,0) = ®(g, ).
Hope:
L1=DT0):D=W*x W2 = R = W%)—q x W%)—q

is a compact perturbation of laplacian, hence is Fredholm of index 0.

e If DT{; ) is an isomorphism, then DAT(LO) is an isomorphism when o large enough, and results

follows from IFT (Inverse Function Theorem).
o Li— DT has finitely dimensional kernel N, finitely dimensional cokernel K, and closed range.

e We have direct sum: D = N $Dq,and R = K ®Ry. Hence £ : D1 — R is an isomorphism.

Theorem 4.9. V(g, ) € WE’é’ X W}f’_q,
D&y : W2 x Wi’ﬁq - ng,q x WP , 1s surjective.

o J Yfinitedim = D guch that D® 4 : V — K is an isomorphism. By perturbing elements in V/
a little bit to get another V' containing all compactly supported elements, we get an isomorphism
DOy r): V — K. Moreover, small perturbation still keeps the direct sum R = R & K.

e Define Lo: D1V >R B K = R by Lo = L1 ® DP(y ). Then

— Lo is surjective, and isomorphic from D; to R;.

— V does not affect the Asymptotics, since elements in V are all compactly supported.
Using the IFT, we get
T(u,Y) + ®(Ag, Ar) = @(uﬁg + Ag, u%(ﬁ + L3Y) + Ar) = 0.

So let (g, 7) = (uﬁg + Ag,u%(fr + L;Y) + Aw), we have (g,7) € S, (g, 7) have harmonic
asymptotics, and (g, 7) is a good approximation of (g, 7) when o large enough. O
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Now we give the proof of Theorem 4.9]

Proof. (of Theorem4.9)

e Image of D®, j is closed with finite co-dimension in ngf ¢

e If not surjective, 3(&, Z) 6/ ker(DQ);’h) C ng;fn, where ng;fn is the dual of W%{q under
the paring W'5_ x WyP | —R.

e Must show: £ =0, Z = 0.

i — &Ry +hDZ +--- =0,
D(I)z( h)(gaz):0<:>{§] § J+ +
9s §(Zi’j + Zjﬂ') +2&h;; = 0.

If £ ~ |z|7P* and | Z| ~ |z|7P2, then:

e lo.t.(low order terms) decays faster than || ~1~2 in the first equation;
e —> ¢ decays faster than |x| 7P
e —> 7 decays faster than |z|P2;

e Boost trap = [£| = O(|z|™), |Z| = O(|z| V), VN.

So &, Z = 0 by unique continuation argument. O

5 Positive Energy Theorem

5.1 Stability and Positive Energy Theorem

Given ¥"~1 € M™ with X = 9Q. Consider (M, g, h) C S"! where S"*! is a space-time. Now
take 7 a unit future pointed normal to M ; v unite outer-normal of X w.r.t. 2 in M, then

T + v : is the outward forward pointing vector.

Define the expansion:

n—1

0 = divs(r +v) =Y (De,(1+v),e;) = (— H+ Trg(h)).
=1

Here 6 measures the Rate of change of area form along 7 + v. Let the mean curvature vector be H=
- Zi<’/7 Deiei>y-

Definition 5.1. 1) X is outer trapped if § < 0 on X;
2) X is MOTS (marginal outer trapped surface) if 6 = 0.
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Remark 5.2. Initial data sets with such X are models for Blackhole initial data.

h =0: (M",g) A.F. Outer-trapped <= H is outward pointing.
Basic Existence Theorem: If Y is outer-trapped, then 3 X stable minimal hypersurface surrounding
3.

Idea: Since 3y is outer-trapped, the mean curvature vector H points outward. Consider 0Br C M in

the exterior region, then 0 Bg has H pointing inward. Consider oriented surfaces homologous to X,
and can find a minimizing representative X" ! using GMT (geometric measure theory) since ¥, and
0B are barriers.

e X" lissmoothifn < 7;

e May have singularities for n > 8. (Co-dimension at least 7)

What does stability mean?

Given ¥ a minimal surface, i.e. H = 0, with unit normal vector v. Take ¢(z) € C,(2), and
consider the deformation vector field ¢ (x)v(z), and construct 3y = exp, (t(¢(x) + v(x))). Stability

means
72
E > 0 .
%2‘ t|—- ) Ve
e Y is stable <= Vo € C1(Y)
/ (Ric(v,v) + || AHQ)deu < / IVl 2dpu.

<= M\o(—L) > 0, where the Jacobi operator Ly = Ay + (Ric(v,v) + || A||?) .

<:>—/<pL<pZO.
pX

e Claim: Gauss equation => Ric(v,v) + ||A|*> = 3(Ru — Rs + || A]%).

Take e, = v, and {e; } tangent to X, 7 = 1,--- ;n — 1, then Ry, = szzl RM. .

ijij
n—1 n—1
Ry=) Ri;=) R+ hihj—|hl*

1,7=1 i,j=1 1,7
=H2=0
n—1
Ry — Ry =2 RjL, + |A|> = 2Ric(v,v) + || Al>.
=1

e ) is stable means:

1
[ 5= Rs #1412 < [ 1Veldn, Ve Lo,
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5.2 Proof of the Positive Energy Theorem

Theorem 5.3. (Positive Energy Theorem) 3 < n < 7. Assume (M",g) AF. ie. g € sz, with
p>n,q> "2 and R, > 0, with |Ry| < Clz|~% for ¢; > n. Then E > 0 and E = 0 only if (M, g)

is isometric to R™.

Proof.
Step 1: Density Theorem =—> 3 g conformally flat near oo, i.e. g = uﬁ §,and £ < E + € for any
€> 0.

° Wantfy:uﬁg, with R=0,and E < E
= Au—c(n)Ryu =0, u— 1atoo,

which always has solution since R, > 0. Since 0 < u < 1 on M, the expansion of u near oo is
u(z) =1+ alz|>* " +lo.witha <0.So E=E +Ca < E.

e Density Theorem = for positive &2 > 0, may assume g is conformally flat near co.

Step2: If £ < 0,and g = w2 § near oo, with u(z) = 1 + %|x|2_” + l.o. = J trapped slab. In

fact, let {z!,--- , 2"} be A.F. coordinates near oo, then the region Sy between Hiy = {x" = +A} is
a trapped slab.
e Take {z!,--- 2"} be coordinates on Hy, with 9; = 821-, then 0, is normal to Hy. Now

(Va,0)t = 'Oy, where

1 4 4

1 4 _
I3 = Pk "2 (Ginj + Ging — Gijn) = — U 2 —(un-24;) = — wuy, <0,

2
2 on n—2

where 24 = 20 28 L O(jz| ™) < 0 for A large and E < 0. Hence Hy = 9T} < 0.

||

Step 3: dJ stable Asymptotically planar minimal hypersurface.

e Cutoff the slab Sy by alarge cylinder Cr = {z = (&,2") : |#| = R}, where 2 = {a!,... 2"~ 1},
and R > 1.
o Letl'y, = {2" =h}NCpg.
e Solve the Plateau Problem for I';, = 3 ZZ;%I smooth by GMT (geometric measure theory),
with
|Xh,r| = min{|X| : X oriented, 0¥ = I';}.

e Claim: If |h| < A, then ¥ g C Sh.

Proof: If 3J;, r does not lie in Sy, it must be tangent to some Hy, (or H_, which is the similar)
with A; > A, and lies totally below Hy,. As Hy, has mean curvature vector pointing upward,
it violates the Maximum Principle.



5 POSITIVE ENERGY THEOREM 31

° Ehﬁ C Sy = dR; — o0, so that Zhi,Ri — X C Sh.
Remark 5.4. This is due to Schoen-Simon-Yau curvature estimates for stable minimal hypersur-

face [8]].

Asymptotics of ¥: Near oo, volume minimizing > = Graph,, i,e, ¥ is given by 2" = v(z), with v
bounded, |Vo| < & and [V20| < (5.

e We will show it by scaling down. Take p = (&,2") € X, with || = 20 for ¢ > 1. Consider
), which is the part of the slab Sy within the cylinder C, () centered around the line {(%,¢) :

|Z| = 20}. Minimizing property of ¥ and comparison —-
XN Q| <A+ e(lc™))wp 10" +CA" 2 =w, 10"+ O )L

e Let g¢° = 0~ !g, then €, is scaled down to a thin slab 0~ €, which has radius 1 centered at &
and height O(c~1), and
e (2N Q)| Swn1 Fe(a™h).

So minimal surface theory implies that o1 (X N €,) is a smooth graph of a function v, where
| < oA, [u(#)| < € and |01 Dv(g)] < €.

e By scaling v back to the original scale, we get the result.

Step 4: n. = 3: ¥ C M3 is stable and asymptoticly planar. Now use stability:

1
[ 5(Ra = Re +lAR)Pdu < [ [9oPdn
—2Ky,

V¢ of compact support.

e 3 2-dimensional: Take v the graphical function, then near oo,

ov 0
g2 (#) = u(@, v(2)) (01 +

j @@) =i +O(|2|71).

e Claim: dim=2, may take ¢ = 1, and Rj; > 0 (will be checked later).

— [ K =limy o [, K >0,

e Using Gauss-Bonnet:

K =2mx(%) — / kg  —2r(x(¥)—1) >0, as o — oco.
|Z|<o |Z|=0 lv
=240(072)

= x(X) > 1 which is a contradiction since planar surface has Euler characteristic < 1.
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Remark 5.5. 1°. Ryy > 0: Ry, = 0 => R; > 0 where § = u’g, by solving
Lu=—p, p>0,small, u>0,u— 1, atoo.

2°. Find ¢; => 1 on compact sets and [;, |V;|? — 0. In fact, take

1, 2| <o
A 1 2)—1 z A
pla)) = { BlralEl o <13 < 02
0, |&|>c2

Then

2
1 27 7 rdr C
2
~ du ~ — ~ 0
/ENSO’ /U<55|<02 (log 0)?||? : (108;0)2/0 r2  logo -

Step 5: n > 4. Idea: assume (M", g) with E < 0, = find (¥"!,5), R = 0 and E < 0. Using
induction to reduce to n = 3. We will list the main steps here, with more details given in the following

section.

e Since £ < 0, can construct X"~ ! which is stable and asymptotically planar. Furthermore ¥ is

a graph {2 = f(&)} near oo, where |f| < C and |V f| < % By using the minimal surface

equation, we can improve |V f| ~ O(|z|>~™). Then the induced metric g* has asymptotics:

S (e flinizs. o 9L OF N _ o 52—n
9ij = U(xa f(x)) : (5ZJ + Ozt Ozl ) = 035 + O(|z] )
— ~

~14+0(|2]2—™) ~O(|z]4—2)

So (%, ¢%) is A.F and E* = 0.

_4_ _
e Want to solve Lyu; = 0on X, with u; — 1 at oo. Let g = uf’?’ gz, then R = 0.

e Solvability: need A\o(—Lyx) > 0.

On X: the Jacobi operator Ly = Axp + (R — Ry + || A||?)¢p. Stability <= A(—L) > 0,
V Q compact in 3, <= — [ ¢Lp > 0,V ¢ € Ce(X).

Ry; = 0, the conformal laplacian is Ly = Axp — ﬁRzgp.

Claim: A\o(—L) > 0, = X\o(—Lx) > 0, since 4(’;__32) < %

e Energy Issue: Want E(gy) = 0= E(u%—ffgg) = a < 0, where u; () has expansion:
a
w(2) =1+ 5]@\3*” +O(|2>™).

Since Lyu; = 0,

. -3 B -3
[Z[<o n- |2|=0 \,V/
~1

NSEn |§:\2*"a
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The left converges to fz Wul |2 + 4(’;7__32)1%211% > 0 if the second variation of the volume of X

satisfies 62V (u1,u;) > 0. Then a < 0.

Definition 5.6. The asymptotic planar ¥ is called strongly stable if the second variation 62V (¢, ) >
0,V ¢ with ¢ — c is of compact support for some ¢ € R*.

e Make special choice of 3: Idea: Choose h, so that

|Xh, 0| = min [, |
|h|<A

We can prove that |h,| < A.

5.3 Several technical issues when n > 4

The reference for dimension n < 7 is: SLN (Springer Lecture Notes) # 1365.

By last section, we construct X"~ ! which is a complete volume minimizing hypersurface inside
the mean convex slab Sj. Furthermore, X is the graph given by: 2™ = f(Z) outside a compact set,
where & = (z!,--- 2" 1), |f| < Aand |[V£|(2) < & and |V2f|(2) < &

= 2l

1°. Decay estimates for the graphical function f

Propostion 5.7. For n > 4. Suppose ¥~ C S, is complete volume minimizing asymptotical planar
hypersurface, which is a graph ™ = f(&) near oo, then

f(2) = a4+ O(|Z]>™™), for some a € [—A, A].

Proof. Write Equation for f near co. In fact, we use the variation formula. The volume of 3 near oo

V(Q) = /Q o [ s@)] = TV fPds.

Using the variational formula % li=oVa(f +tn) =0,

2-1) . Vf-Vnp 2(n—1) _4 Ou .
O = n—2 1 V 2 d .

/u [ TrNE  n—2 ¢ aamV +IV/P]d
So f should satisfy the Minimal Surface Equation:

_2(n=1) 2(n—1) oif 2(n—1) _,4
u n-2 O;j(u -2 = u Opun/1+ |V f]2.

Y, F(2)
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e Write Lf = Z?]_:ll aijafjf + b;0; f, then
aij = 0ij +O(12] %), bi =0(2]7?).
e Using the expansion u(z) = 1 + £ |27 + O(|z|'™"),

2 —
— Q= Bl 4 O ) = O(fel )

since [2"| < A, hence F(z) = O(|z|™™).
e Using the elliptic theory in weighted spaces, = f(2) = a + B|2[>™" + L.o.t..

4

2°. Conformally change (3, §) to scalar flat (X, u;~* §)

Consider (X, ), where ¢ is the metric induced from g. In the base coordinates: & = (z

R A 19—n
9ij = un=2 (&, f(£))[6i; + (0:f)(0;.1)] = bi; + O(|2]*™),
—_—
O(l@‘4—2n)
— E=E(j) =0.
Propostion 5.8. Stability of ¥ = Ju; > 0 on ¥, with u; — 1 at oo, s.t.
(x) Liug = Auy —c(n — I)Rul =0,

where ¢(n) = 43;21).

Proof. Claim: Ly : W2P(S) — W (%), %52 < g < n — 3, then
L1 is injective, hence isomorphism.

In fact, stability = Vi € CL(2),

1 - . .
/2(R—R+\|All2)sﬁ2du§/ \Vol?dfi,
> >

1 A 2 7~ 2 1A .
—~Rp2d d f
= . 5 Tt u</EIV<p| i, if o #0,
take R>0
— cn-1) [ ~Refdp<2en—1) [ [VePdi< [ [TePdn
> N——J3 >

<1

= Mo(—Li1) >0, oncompact sets.

34
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By the embedding WE;;’(E) C WH(S) when ¢ > 253, Vp € WE’f(E), we can approximate by

compactly supported function, hence
c(n — 1)/ —Rp?dji < / |Vl ?dji.
b b
Using the decay estimates p(dyp) = O(|z|~2¢1) = o(|z|~(®~2)), and integration by part,

— - / oLypdji > 0,
>

“="onlyif ¢ =0, so L is injective. By L is Fredholm of index 0 since ¢ < (n — 3), hence
L is an isomorphism.
Let v = uy — 1, then (x) is equivalent to

Liv=Av; —c¢(n—1)Rv=c(n—1)R.

By the decay of §, R = O(|&|™™) € Wﬁg?_q, so we can solve with v € Wz’f_q.

To show that u; = 1 4 v is positive,

1. If u; < 0 somewhere, we can take a connected component ) of the region {Z : wuy(%) <
0}. Then u;|n forms a nearly zero eigenfunction(by mollifying u1|q a little bit) of L, violate
)\O(Ll) > 0.

2. If u; = 0 somewhere, the it violates the Strong Maximum Principal.

4

)

3°. Strong stability and energy estimates for (3,5 = u;°g

Denote X, = lim, o0 Xj, p, to be the limit for some fixed height € [—A, A], and § the induced
metric on 3, by (M™, g). We can conformally change § to § by

4

3 A

g=ui"g.

Then § is scalar flat, i.e. R =0 by equation (x) above. Moreover, u; has the expansion:

E
w (#) =1+ |27 + O3 ™),
where E is the ADM energy of (3, §) since § has £ = 0.

e Hope: E < O(for (M, g)) = E < 0 (for (X, §)).

e Want: for some h, 3. is strongly stable, i.e.
522(cp, ) >0, ¥, s.t. ¢ — cis of compact support for some ¢ € R

Here 6°S(p,¢) = [ [Ve|? — 3(R — R+ ||A||?)9? where the terms (R — R + || A[?) is in
L'(X) by the decay estimates as in Theorem hence makes sense for ¢ to approach constant

near oo.
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Lemma 5.9. 3 h, € (—A,A), so that [Zy,, ,| = minge(_p A [Zn,p

Proof. First Variation Formula when H = 0: Let X be a smooth vector field, and F; the flow of X.

Let X be a smooth surface, then

d

o ®) = [[divsCOdn= [ (xipdo

”

where 77 is the unit co-normal of % C X. Here the second “ = ” comes from the following.
Take e1,--- ,e,_1 an o.n. basis on T'Y, then divs(X) = Y0 (De, X, e) = S0 MDD, X7 ei) +

b

(De, X+, e;) = divss(XT). So the divergence Theorem gives the second =
—_———

=—Xx1.H=0
Take X = 0, = % near 0%y, ,, then

0% p(X) = / (O, Mdo.
0%, p

1. Since ¥, , lies in the slab Sy, the co-normal 77 is up-ward. Since g is conformally flat near oo,

the inner product of 7 and 0, is positive, so 63, ,(9y,) > 0 for h near A, —
|Xh,l < [Xapl, forh S A
2. Similarly, ¥_, , lies inside Sy, so the co-normal 77 is downward, hence 6% _j , < 0, =

Shpl < [E-ppl,  forh 2 —A.

So the minimizer of ¥, , among {¥5, , : h € [~A, A]} lies strictly in Sj. O

Hence we have
5%, »(X, X) >0, if X = 0, near 9%, ,

since X = 0, near 0%, ,.p 18 a valid candidate for the variation.

Now let ¥ = limy,, Xip, . ,,, which is asymptotically planar and stable.
Lemma 5.10. X is strongly stable.

Proof. Take any X = 0,, near oo, we claim:

lim 6%%;(X, X) = 6*%(X, X) > 0.

1—00

Take Fy(z) = = + t0,, near oco.
2(n—1) 1 42 2 2(n—1)
e dp=u "2 dyg near oo, where dug = dx* - - - dz", then Jdpy = (W‘tzou =2 )d .
2(n—1)
u(z) =1+ O(|z|*>™™), s0 2u = O(|z|™"), = 9*u =O(|z|™™).

n:2
By volume comparison, |¥; N B, | < Co™ L.
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So 522i\Rn\BR(X, X)) is uniformly small for R large.
Let v be the unite normal of X, then
_ -Vf,1
VvV =1U 7;32 g
VI+I|VP?
since u = 1+ O(|z|*> ™) and |V f| = O(|2|*>~™). Since 2nd variation §23 are non-negative on W12

terms, so 02X (v, v) > 0. So ¥ is strongly stable, i.e. X = ov, with ¢ = 1 near oo, then

= 9, + 0(j2[>™),

3*S(ip, ) > 0.
O
Lemma 5.11. £ < 0.
Proof. Take ¢ = uy = 1+ O(|#[>~™), then by strong stability
/(]Vu1|2 + ¢(n — 1)Ru?)dji > 0.
b))
While the left hand side is
R o _
lim (|Vui|? + e(n — 1)Ru?)djp = lim ulﬂda == Ewp—1 >0,
p—+00 B, p—>0 3B, v
where in the second “ = ” we use the equation Liu; = 0, and the last “ = we use Juj = —”Tf?’\i"|2_”
near co. So E < 0. O
5.4 Rigidity part of Theorem
Proof. We know E > 0. If E = 0, let us show the rigidity step by step.
Step 1: R, = 0. If R, > 0 somewhere, solve
Au—c(n)Rgu=0, u—1atoo.

o letg= uﬁg, then R = 0.

e u has expansion: u(z) = 1+ Z|z[>™" + Lo.t..

e Claim: F < 0, since

ou
0= (Au = c(n)Ryu) = —  do —c(n) Rgudyt,
B, 4B, v, B,

2—n o 1—
NTEP n

n —

0=—
2

2 .
ST E - c(n)/ Rgudy.
M

— F<0if R, > 0 somewhere.
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Step 2: Ric, = 0.
Let o be a smooth symmetric (0,2) tensor with compact support. Denote go = g + €0, since
Ry = 0, then R, = O(e) and has compact support. Moreover [,, |Re|"?d is small if € is small
enough. Solve
Acue — c(n)Reue =0,  ue — 1 at oo.

_4

® j. = ul ?g., then g has R. = 0.
e Positive Energy Theorem — E.>0and Ey = E = 0, with ug = 1. Since ge = g near oo,

~ 2¢(n) /
Eo=—" | Roudu..
(n=2)[S"1 Ju

e So E€ has a critical point when € = 0,

0= thO —C/ | R d,u-l—C/ RO&L (uedpae)

=—-C / (0, Ricg)dp, Yo of compact support.
M
== Ric=0.

Step 3: When n = 3, Ric = 0 = g is flat = (M", g) @ R>.

Step 4: n > 4. Let {z!,--- , 2"} be coordinates of (M", g) near co. We can extend to the interior to
get a mapping {x!,-- 2"} : M" — R".

o Let fi=Ayzl = gjk’I’;,f = O(|z|~%), where ¢; > 1+ 252 = 2 = 2. Solve
Avt = fi vt — 0at co.

= v' = O(|z| %) for g = q1 — 2 > 0.

e Leti! = 2/ — o', then A#? = 0. Let F' = (', , &™) : M — R". Then from the asymptotics,
(&#,---,2™) is a harmonic A.F. coordinates near oo.
o Let §ij = ( 8‘21, d$]> then under harmonic coordinates

~ 1 . o
0= Rij = —584(9i5) + Q(99,99),
where 9§ = dg decays faster than |z| ™2, hence Q(dg, 3) decays faster than |z|~".

= §ij = 0ij + |2+ O3],
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e Claim: ¢;; =0,V 1,7.
Pf: May rotate the coordinates &' to assume cij = ¢;0;5. Then g;; = 0i5 + ciéij|i\2_” +l.o.t.
and §¥ = 6% — ¢;6;;|2|> "+ L.o.t.. Then \/det(g) = 1+ (31, ¢;)|#|> "+ L.o.t.. Using the

harmonic condition

. 1 — C; o o
0=Az"= \/?]83( gg”) & 22283|ZC|2 n—Ci5ijaj|ZC|2 m
1~ | 0dd
:(n—2)(ci—chk) Zfi
24~ |2
:>ci:%Zzzlck,fori:1,~-,n,:>2ici:%Zici,zziqzo,zcizofor

i=1,---,n.
e Hence .@z’j = 5ij + O(|.§i“1_n)
e Claim: F'is an isometry.
Pf: Using the Bochner formula,
1 , .
/ Ng|VE3 = / |VVz'|2 + Ric(Vi,Vi).
2 Bp 9 BP 9 T

Here |[Vi'[3 = ¢ = 1+ O(|#["~"), so using the divergence theorem, LHS (left hand side)=

9|V

%faBp 5 do — 0 when p — co. = V'V’ = 0, which means that V4! is parallel

~O(p™™)
vector field.

— gz‘j _ (V:ﬁi,Vij> = 0;;, = isometry.

6 Marginally outer trapped surface (MOTS)

6.1 Introduction to MOTS

Space-time Case: (M™, g, h) A.F. satisfies (D.E.C.): i > |.J|, with the ADM energy-momentum vec-
tor (E, P) a 4-vector.

Positive Energy Theorem: £ > 0, and “E = 0” only if (M, g, h) is isometrically embedded in R™!,
with ¢ the induced metric and h the 2nd f.f..

Positive Mass Theorem: E > |P|, and “E = |P|” only if (M, g, h) is isometrically embedded in
R™!, with g the induced metric and h the 2nd f.f.




6 MARGINALLY OUTER TRAPPED SURFACE (MOTS) 40
Remark 6.1. 3 < n < 7 case was proved by Eichmair-Huang-Lee-Schoen [5]].

Recall: ¥~ C M is Outer-trapped if 0 = divs(v + eg) = —(Hx + Tryh) < 0; and a MOTS if
0 =0onX.

Stability Criterion: ¥ with H = 0, then stability <= §2% (0, ¢) > 0, V ¢ compactly supported.
§*3(p, p) = — [x eLpdp, where L = A — Q, with Q = Ric(v,v) + || A[]%.

Propostion 6.2. Stability <= 3 u > 0 with Lu < 0.

Remark 6.3. Let us discuss the motivation of the stability criterion. Consider ¥, t € (—¢,€) a local
foliation of ¥ along u(z)v(z). Let 0; be the expansion of ;. If || is increasing for ¢ > 0, while | ¥4|
decreasing for ¢ < 0, we should have

f; <0, whent <0; 6 >0, whent > 0.

Hence

d
—Lu = — 0, > 0.
Lu dttzot_o

In this case, =— Lu < 0, = X is stable.

Proof. (of Proposition[6.2)) (=) We only talk about the case X is compact. X stable = 3 u > 0 the
lowest eigen-function, such that —Lu = Agu < 0.
(<) Assume u > 0, Lu = Au + Qu < 0. Let w = log u, then

A
Aw = u“ IVuwl? < —Q — |Vl

Given ¢ € C}(X), multiply the above by (? and integration:

/E o A= — /E 25(Vep, V) < /E (—Q — |Vul)y?

— /Qso < - /IszsO + 2<P<V¢,Vw>,
<|W|2+\Vw|2

= /Q¢2§/!V¢!27<:> —/cp&sz.
> ) >

Stable MOTS:
Given X"~ ! C (M",g,h). Take {e1, - ,e,_1} an o.n. basis of ¥"~!, and v = e, the unit
normal of 3 in M. Denote ¢, the unit normal of (M, g, h) in some ambient space-time S.
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Definition 6.4. X is a stable MOTS, if 6 = 0 and 3 u > 0, such that Lu < 0. Here

d ‘
Lo=—=| 0= D0p—2X,Ve) = (Q+divsX — | X|P)e,
1 1 2
o ()= §R2 —(u+Jw)) - §||XH )
e y=A+h|s,

e X =Tany(D,ey) = — Z?:_ll hine€;.
We call such u a test function.
6.2 Property of stable MOTS
Propostion 6.5. If 3 is a stable MOTS, then V Q2 C X, A(—L, ) > 0. Here
Lo = Ap+ (R + [XIP)e,

where x = A + hly, with A the 2nd f.f. of ¥ in M. Or equivalently,

1

3 [Re+ PP < [VoPau. v e i),

Proof. Take w = log u with u given by the definition, then Aw = 2% — |Vw|?. Using Lu < 0, then

u

Aw < 2(X, V) + (Q + dive X — [| X)) — |V

Multiply the above with ¢?, for ¢ € CZ(X), integrate on . and use divergence theorem,

—2/ PV, Vw)dp < —2/ w(Vso,X>du+2/<X, Vuw)p*dp
by by b

+ / (@~ IXIP)e? / IVwl?e2dy.
> >
— / (Vo Vu)du < — / IX — VulPp? -2 / oV, X) + / Q42
> > > >
= —/Eszdu < —2/2¢<X—Vw,v<p>du—/ZHX — Vu|*¢*du

<2 /2 0l I1X — Vo | Vigldys — /E IX — Vuw|2e2dy

< [ IV
>

The (D.E.C.) dominant energy condition means that @ < 5(Ryx, — ||x||?). Hence we finish the proof.
O
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Assume: 3 is a asymptotic planar MOTS (in some slabs) and n > 4.

Definition 6.6. 3 is a strongly stable MOTS, if ¥ is a stable MOTS, and the test function v = 1 +
O(lz[*™™), Lu = O(|z[ ™).

Propostion 6.7. If X is strongly stable, then

1
3 L CRat B < [ IVeldn Ve GYE), orp—ceChm).

Proof. In the proof above, we need to take care of integration by part:
/ rAw = —2/ oV, V), & / O*divs X = —2/ oV, X).
pX pX pX X

Here w = logu = O(|z|>™), Vw = O(|z|'~") and Aw = 2% — V4 — O(|z|~"). Then

U u?

/4,02sz lim ©*Aw = lim ©? gw do —2/ oV, Vw)
b)) pP—00 BP pP—00 6Bp Vﬁ O(p;f’n) BP
~O(pl—m)
= lim —2/ ©(Ve, Vw) = —2/ ©(Ve, Vw).
pP—00 Bp »

e Using the decay of the data (g, h) under harmonic asymptotics, i.e. g = § + O(|z|>~™) and
h=0(z]'"), = X = " hinei = O(|z|' ™). Hence

/ G(X, v)do = / 1-0(p"") - 0(p"2)d|S"| > 0.
9B, 8B,

Results known about stable MOTS:

e >I: compact stable MOTS; (M, g, h): (D.E.C.), then X is Yamabe-positive.
e n=23:(M,g,h) (D.E.C.), # A.P. (asymptotically planar) stable MOTS.
(By Gauss-Bonnet Theorem as in the time symmetric case.)

e (M,g,h) (D.E.C.), # A.P. strongly stable MOTS.

(The existence of such ¥ = Ju > 0, R(uﬁg) =0, withu(z) = 1+ [z + Lot., =
E (uﬁ g) < 0, contradiction to Positive Energy Theorem.)
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6.3 Jang equation and MOTS

Given initial data set (M™, g, h), let (M = M x R, §,h), where § = g + dt2, h = w*h,
with 7 : M x R! — M given by 7(p,t) = p. In local coordinates {z!,--- 2"} on M, fL,-j =
> i hijda'dal.

e Given a function f : M — R! and the graph G = graphy = {(z, f(z)) : x € M}.

Denote V to be the connection on M and M ,and V the connection on G.

e Jang equation: Hg + Treh = 0, where H the mean curvature of G C M x R, Hence Jang

equation is just the MOTS equation 0 = Hg + Treh = 0 for graph G.

. 3 3 — (—Vf,l)
e The upper-ward unit normal is v = N
e The position vector X = (z, f(x)); 2nd £.f. A;j(z) = (V;V,;X,v) = \/%.

(The second equality is because:
Aij(z) = (Vo 1,00(05 + [i01),v) = (Vo,(9; + f;0), )

+ fi<Vat(8j + fjat), V) = (ViVjX, v).

=0, since O is parallel.

So the Jang equation is

nooo ViV.if
(J.E.): 77 (———=L—=— + hij) =0, (6.1)
2 e
where the induced metric is g;; = g;; + %%.

(J.E.) and trivial data:
Suppose M™ is embedded in R™!,i.e. M™ C R™!, and M™ is space-like and Asymptotic Flat. Let
{y°, y',--- ,y"} be the flat coordinates of R™!. Assume M™ is given by a graph y° = f(y',--- ,y"),

with |0f| < 1(space-like) and f — 0 at co. Then the induced metric and 2nd f.f. (g, h) are given by:

— trivial data characterization.

{ gij = i — (9 £)(0; f),

9:0: f
hij = ———L

Vi-lof]?

Propostion 6.8. Initial data (M™, g, h) is trivial <= 3 f solution of (J.E.), with f — 0 at oo, such
that
G = graphy is isometricto R";  x = Ag + MG =0.
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Proof. (“ <= ") Let {y',--- ,y"} be the Euclidean coordinates on G = R™. We can push down
{y!,---,y"} to be coordinates on M by the graphical diffeomorphism 7 : G — M. Then Gij = 0ij =

gij + [y fyi- Hence
gij = 0ij — fyi [, is the metric induced of Graph in R™1L,
Now construct a mapping
p:G R byp:yeG— (fly),y) eRY,

we know that the induced metric is just g;;.
99, f
V1-10f

Since ¥ = Ag + iL|G = 0, Ac = —hq. Take an o.n. basis {e1, -+ ,ey} for G, and view f as a

What left to show is:  h;; = —

function on G, i.e. f|¢ = t|q, where t is the time function, then V, f = (e;, %). Moreover,

_ 0 _ 0 1
iVif = (Veej, =2) = (Ve,€5) AV, 7) = Aij—F——e=.
ViV;f (Vv i€j 8t> (V zej)+ J(V 8t> I TIVIE

=0

Hence A;j = /1 + [Vf]2V,V, f.
Claim: +/1+|Vf|?=

o

VIV

To show the claim, consider 7 : G — M, with 7! (z) = (z, f(2)), so det[(x7!).] = /1 + [V ]2
On the other hand, since g;; = 0;;, det(m.) = \/det(g). Furthermore since g;; = 6;; — (9;f)(0; f).
Vdet(g) = /1 —[0f[! = /1 — |V f|2. Combing above,

_ ViV,f 9:0; f
hij = —Ac = —/1+ [VPViV, [ = _W G —]Wf\g‘

7 Space-time Positive Energy Theorem

Theorem 7.1. (Schoen-Yau [10]) (D.E.C.) = E > 0. E = 0 only if (M, g, h) is trivial.

Proof. Assume can solve (J.E.) for f and ¥ = {(z, f(x)) : € M} is the graph. Under the decay of
the initial data g = 6 + O(|z| ) and h = O(|z|~'7P) for p > 252, the decay of f is

f(z)=0(z|'™?), 0f =0(lz|™P),

by (J.E.). So the induced metric g;; = gij + fifj = gij + O(|z|72P), with2p > n — 2,50 £ = E.
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e Claim: X is strongly stable.

Pf: Ifv = (v ,at> then v = .Hence v > 0 and v = 1 + O(|z|~2P).

V 1+\Vf|2
Notice that vertical translation of the graph is invariant. Let ¥; = {(z, f(z) +¢) : = € M}.
Then Lv = dt’t o=, = 0. Hence

Ly=0,v>0 v=1+0(z|"?),2p >n—2,=> X is strongly stable.

o Let§ = un2gony. We want R = 0. Here |B| ~ |R| + O(|z|~2) = O(|z|~"~%) by A.F.
conditions. Hence by Proposition [6.7]and similar ideas as in Step 2 of Chap ??, 3« > 0, which
solves:

Au—c(n)Ru=0 onY, u— 1atoo.

e By strong stability, we get 3 [.(—R + || x[|*)u?dp < [y |Vul*dp.

— e ) [Vl [ R+l < ) [ 9

=c(n)™! lim Vul|? = ¢(n)™! lim (—/ uAu—i—/ uVyudo).
B, 9B,

p—00 B, p—>00

Using the equality Au — ¢(n)Ru = 0, =

( ( ) /|v'u,‘2 /’X”ZU <C ) L Jim u?nudoz—(n—2)c(n)’1|5"’1|a,

pP—00 8Bp

where u = 1 + a|z|*> ™ + l.o.t.. So a < 0, hence

EFE=E+a=E+a<E.

(2~ c(n / Ful? + / IlPu? =0,

— u = 1,and y = 0. Hence £ = 0, — § = g is flat. So (%, ) is isometric to R"”. =
(M, g, h) is trivial.

o If £ =0,thena =0,

O]

Remark 7.2. In fact, we must allow the solution f of (J.E.) to blow-up. f blows up to +oo at the
cylinder over stable future MOTS, and blows down to —oo to stable past MOTS.
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8 Space-time Positive Mass Theorem

(M™, g,h) AE. E and P are energy and linear momentum.

Theorem 8.1. (Eichmair, Huang, Lee, Schoen [5]) For 3 < n < 7, if D.E.C. holds, then E > |P|.

Density Theorem: If £ < |P|, then 3 (§, k) satisfying strict D.E.C. (i.e. i > |.J|), and (§, h) are in

harmonic asymptotics, and E < |]~D |

W.L.O.G.: Assume Strict D.E.C. and Harmonic asymptotics (Definition 4.6)):

_4
{ g — un—Q(S’

2 near oo.
7 =un2(Lyd — (divsY)d),

By harmonic expansion,
E
u(@) =1+ S |2*7" + Oz ™),

n—1 _ _
Yi(e) = —— 21’Dz'|90|2 "+ O(|x' ™).

Propostion 8.2. If E < |P| and we choose coordinates such that P = (0, --- , 0, |P|), then the slab
SA ={z = (Z,zy) : |zn] < A} is atrapped region.

Proof. Consider ¥ = {z, = A}. The expansion is § = —(Hx, + T'rxh). First, as in step 2 of

Theorem[5.3] we can compute the mean curvature of X as,

2n—1) __n_ z
Hy = —uu n—20hu = (n — 1)Eﬁ

p— +O(|z|™™).
Then we calculate Tryh near co. Trm = (Trh) — n(Trh) = (1 —n)(Trh), then

n —

h=mn+ (Trh)g=m— ﬁ(Tﬁr)g = gz (Lyé — (divsY)d) + iu%(divgY)d

2 1 )

Since g is conformally flat near co,
2 1 n
Trsh = Trg{um[y;j +Yi— 71(2 Yk,k)dij]}, forl1 <i,7<n-1
n—
k=1

—1
== Yo+ O(2 ™), since Yi(a) = O(Ja' ™), for 1 <i <n—1
n_

. n—1 _
= —(n— 1);13\,% +O(fe| "), since Y, () = — | Plla " + Lot
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Adding together,

Tn

0 = —(Hs + Trsh) = —(n = 1)(E — [P[);—= + O(|z| ™).

|z |™
So

oz, =+A>1 =0, > 0;
o1, =A< —-1,—60_, <.

O]

Constructing stable MOTS: As in Step 3 of Theorem we consider the boundary I'y, , = {x, =
h} N {|Z| = p}. Solve the Dirichlet Problem for stable MOTS with boundary I'y, ,, we get

S, — —stable MOTS,  with 9%, , = T ,.

e Consider the region which is the intersection between the intersection of the trapped slab Sy and
the cylinder C, = {x = (Z,2,) : |2| < p}. The upper and lower boundary is trapped by the
previous Proposition. The side boundary C,, is also trapped because the mean curvature decays
as —He ~ %, and |T'r¢h| ~ o(pn—lm), hence —H > |T'r¢h|. So the whole region inside S and
the cylinder C, is a trapped region. Hence X, , lies entirely inside the region inside S and the
cylinder C,,.

e Now taking limits as p — oo,

Yp = lim ¥} ,, (needlocal volume and 2nd f.f. bounds).
p—00

e Volume estimates for stable MOTS: Recall that the MOTS X is the blow-up sets of the MOTS

equation:

g”’(iD?jf +hij) = divM(ivf
VI+IVE VI+|V]?
Vifvif Vf

where Gij = 9ij + fa:iij’ g¥ =g¥ — THVz Denote n = W, then

) +57hi; =0,

<1, n=-v,onx.

Given a ball B, in M, ¥ cuts B, into two connected components, and consider one of the

connected component €2. Using divergence Theorem,

/—gijﬁij:/dian:/ n-V:/ 77~(—V)+/ n-v.
Q Q o0 N 20Ny

Using the above fact, and noting that ¥ h;; is bounded, =

/ n«w—mmau/ anﬂ%%aM/—W%SGWWMW%)
N0 20NT 0 B,
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Putting them together,

= | N B,| < [0B,| + (sup|h|)vol(B,).
BP

Hence Xj, exists by volume estimates and curvature estimates (see the original paper). By similar
arguments as in step 3 of Theorem[5.3] we have

e Y isagraphof 2" = f(x',--- , 2"~ !) near oo;
o [fI<A;

o [VfI<C/lal.

Claim: When n > 4, f(z) = a + O(|z|3~™%%) by the MOTS equation similar as in Step 1 of
Case n = 3: X2 C M? stable MOTS, X C Sy. Using Proposition|6.5]

1
2/E—Rg<,02du < /E IVoldu, Ve CHE), ¢ #0.

Using the log cutoff trick, 3 ¢;(€ C?!) — 1 on compact subset of ¥, and [, [Vp;|*> — 0. Using
Gauss-Bonnet,

= 27x(X) — lim ky = / Kdp = lim Kdup > 0.
p J2noB, by P00 JeNB,

Since lim,, [55 B, kg = 2m. = X(2) > 1, contradiction to 3 not compact.

Case n > 4: Need to find strongly stable MOTS 3., which is asymptotically planar. Let g be the

induced metric, i.e.
4 _
gij = yn—2 (511 + f:rlfzj) = 51'3‘ + O(‘:L‘|2 n)

e So (3, g) has energy E = 0.
e Using the stability, 3 u > 0, u — 1 at co, such that Au — ¢(n)Ru = 0 (see Step 2 in §5.3).
Hence consider the conformal change § = u% g, R = 0 s scalar flat.

e Furthermore, £ < 0 by strong stability (see Step 3 in E) hence a contradiction by induction.

Strongly stability: In the Riemannian case (Theorem , in order to get a strongly stable minimal

surface, we take a volume minimizer X, , among all {3, , : p € (—A, A)}, then 6%|%,[(X, X) >0
for X = 0, near 03J,. There

d .
il = [ divsXau= [ (X,
Xh,p 0%,

where 7 is the unit outer co-normal for 33y, ,.
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In the MOTS case, for fixed p, we similarly consider
F(h) = / (O, m)do,
T,

where 7) is the unit outer co-normal for the stable MOTS %y, .

e Want to find h,, F'(h,) > 0.

e By the barrier arguments as step 3 in F(A) > 0> F(—A). This is because (J,,,n) > 0 on
I'ppiand (Op,m) <O0onl'_y ,.

e F'(h) may have jumps.

e If F'is not continuous at hg, then

lim F(h)> lim F(h).
h 7 ho h\eho

This is because: If hg is a jump, let fho, p be the lower bound of un-trapped surfaces, and X, ,
be the upper bound of trapped surfaces. Then fho, p lies above X, . Here X, , and fho,p are

upper and lower MOTS. Hence F'(hg > F(hg , since the unit co-normal of X,
P

)‘;ho’ ”Ehw

is “above” that of ¥y, .
e Let h, =inf{h: F(f) > 0}. Then F is continuous at h,, and F'(h,) = 0.

e X, p satisfies the strongly stability conditions (details referred to the original paper).

9 Penrose inequality

9.1 Motivation and statement

e Schwartzchild: when n = 3, is given by (R? \ {0}, go),

m oy
= (14 =—)%.
90 ( + 2’1“> ij
When r = |z| = %, we have a horizon(minimal surface) ¥ = {|z| = §}. Consider the

restricted metric on X: go|s = 16d¢,, /2, where d&,, /5 is the standard metric on {|z| = 5§} C
R3. Hence
A= Area(X) =16 -4m - (%)2 = 167mm>.

So we have the equality connecting ADM mass m and horizon area:

m— ] A
V167
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e Consider an arbitrary 3-dimensional initial data set (M, g, h), with ¥ = OM. Assume ¥ is a
MOTS, and M contains no other compact MOTS, then the Penrose Inequality states that:

A
D.EC. — >4 —
m= 167’

and equality holds only if (M, g, h) < S*, where S* is the Schwartzchild space-time.

e In case h = 0, the statement reduces to Riemannian Penrose inequality:

A
Rg>0,— m> 4/ 16+ “ =" only for (R3\Bm/2,g0).
e The Schwartzchild space-time is (S?, g5), where S* = Rx (R3\{0}), and g5 = —V (|z|)2dt>+
2m
go=—(1— F)%dt* + (1~ m)%zr? +r2dg?.

g0
Note that V' = 0 on R. Now we construct a graph (M3, g, h) outside R x X, where M =
graphy = {(t,z) € S*: t = f(z)}, g = gslgrapn = 9o — V2df @ df, and h is the induced 2nd

f.f.. Hence we can construct an example where | E|2 — | P|> = m?, which has strict inequality in

what we proposed. i.e. £ > \/%.

Results in & = 0 case (Riemannian Penrose Inequality (R.P.L.)):

In the times symmetric (h = 0) case (M, g),
e MOTS reduces to minimal surface, and D.E.C. (dominant energy condition) reduces to 2, > 0.

There are two approaches to the time symmetric case. One is the Inverse Mean Curvature Flow method
by G. Huisken and T. Ilmenan [6], and the other is the Conformal Flow of Metric method by H. Bray
[3]. Let us discuss them separately in the following.

9.2 Inverse Mean Curvature Flow (n = 3)

This method is proposed by R. Geroch, P. Jang and R. Wald, and eventually solved by Huisken
and Ilmenan.

In this case, the only MOTS X is then a minimal surface. They proposed to find a family of
2-surfaces {¥;}7°, with ¥; ~ 52 starting from Yy = X, and evolves to infinity in the AF end.

e Hawking Mass: Given a 2-surface ¥ ~ S? C M, the Hawking mass is defined as:

(%) = \/E/E(K - iHZ)du - \/g(zm - i/EHQda).
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Since ¥ is minimal, i.e. H = 0, my(Xo) = 4n which is just 47mm is the Schwartzchild

T6r
metric.
The Hawking mass of the large sphere S, = {|z| = p} tends to the ADM mass, i.e. 47m =

e There exists a flow {¥;}{, such that %mH(Zt) > 0, and “ = 0” only for the t = 0 slice in
the Schwartzchild S*.
e The Inverse Mean Curvature Flow (1/H flow) is an evolution F : $? x [0,00) — M, defined
by:
dr 1
dat ~ H

where H > 0 is the mean curvature for ¥; = F;(S 2) = 9€);, which is a boundary for some

7, Fy(S?) =X 9.1)

region ), and 7/ is the unit outer normal of ;.

Assume we have a smooth solution to the 1/H-flow (9.1), let us calculate the evolution of the
Hawking mass my (3;).

Smp(Sy) 1A 1 [y, 2H - H'dp+ H(dp)

mup(Sy)  2A 4 A — 1 [ H2dp

Along the IMCF, we have

(dut)' = ! \dﬂt dput;
d /
Al = d*A(Et) (dp)" = A;
t =,
and 9 dF | |
/ _ _ - : AN
H = (%H Ly, |— — | = AgtH (Ric(v,v) + |A| )H

where Ly, is the stability operator for the 2nd variation. The Gauss equation on > gives us:

Ric(v,v) RM— Z i) RM Ry + H? —|A]%).
4,j=1

Hence using Ry; > 0,
/ 1 . 9 1 )
H-H = —HAﬁ — (Ric(v,v) + |A]?) < HA— - f( Ry + H? +|A]%).
Using Ry, = 2k with « the Gaussian curvature and the Gauss-Bonnet theorem,

1
/ 2H - H'dp + H?(dp)' g/ [-2HA— + Rs, —H? — |A]? + H?|du
po po H 52,/
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VH|? 1
:87r+/ ol 2’ —\A|2§87r—/ H*.
= H 2Js,

Plug in to the formula for %mH(Et),

%mH(Et)>1_}_ 8m— 5 [y, H _0
mg(X) — 2 4 dm—1 [(H?dp

Furthermore, “ = 0” only if H = const and A = %H g.

e The monotonicity %my(;) > 0 along a smooth solution of the IMCF is called Geroch mono-
tonicity formula.

e However, smooth solution of IMCF does not always exist. A counterexample is a thing torus,
which can be mean convex, i.e. H > 0, but the IMCF develops singularity at finite time.

e Huisken-Ilmenan develops a weak solution to IMCF. They proposed a level set flow of a function
u, such that ¥y = {x € M : u(x) = t}. Hence the IMCF equation becomes:

Vu

dw(‘V ’)

|Vul, 3 ={u(x)=0}.

e Note: If 3J; exists globally, each ¥J; is outer minimizing.

In fact, div ( Y |) > () by definition. Consider any other surface 3 enclosing Yy, i.e. there exists
a region ) C M, such that 9Q = ¥ — %,. Using the dlvergence theorem for div |¥“‘) in Q,

and observing that the unit outer normal of 3, is just |Vu\ ,

Vu Vu ~
——,v) — |2 < |12 — | 2]
o< [[dio( ) = (D7) =15 < 50 - 10

e In Huisken-Ilmeman’s weak solution, if >4, is not outer minimizing anymore, the weak flows

just replaces it by the outer-minimizing hall ito.

Remark 9.1. This method could not solve the full problem in the case of multi-blackholes.

9.3 H. Bray’s Conformal Flow of Metrics

e Bray’s method works for R.P.I. for disconnected MOTS, and the case 3 < n < 7 (with D. Lee
(4D).

e Bray’s method uses Positive Mass Theorem, while Huisken-Ilmanen’s method can give another

proof of Positive Mass Theorem.
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Assume the initial data set (M, go) is a asymptotically flat, with an outmost horizon boundary
Yo = OM. Assume furthermore gy is harmonic flat near oo, i.e. gy = v*J, where § is the standard

metric and v is a harmonic function in the asymptotically flat coordinates x = {x’}le Hence

m() —92
=1+_-—+0
v= 1 g+ Ol )

where my is the ADM mass of (M, go).

The idea is to find a flow of the metrics which are conformal to the original one. We want to

construct a flow like follows:

e Let g; = u}go, where u; > 0 is a positive function defined in the below.
e Let 3 be the outer-minimizing minimal surface for g.
o Ry, =0in M\ X
Key Properties:
o A(t) = Area(3y, g:) = A(0) = Area(X);
e The ADM m(t) mass of g; is non-increasing;

e For ¢ large enough, (M, g, %) is diffeomorphic to a Schwartzchild solution.

These properties imply the Riemannian Penrose Inequality.

Flow is defined by: First define v; as

Ngovg =0, on M\ Xy
{ UVt = O, on Et;

v(z) = —e7t,  asx — oo.

Assume v; = 0 inside 3, then v; is super harmonic, i.e. Av; < 0.

Define u; by %ut =, up = 1, then wy(x) = 1 + fg vs(x)ds. Hence uy is harmonic on M \ ¥y,
and super-harmonic, i.e. Au; < 0on M.

The existence theory of this flow is referred to H. Bray’s paper [3]. Now let us check some of the
key properties.

1. Area(t) constant:

d d
$|t:t0Area(Zt,gt) = JArea(Xy, gt,) +/Et %}t:to(dat) =0.
=0 2

1>=0

Ii = 0 because ¥, is a minimal surface in (M, gy, ); I2 = 0 is due to the fact that %gt 5, =

a 300 — ; a — =
4dtut‘2tut90 = 0, since dtut|2t = Ut’zt =0.

2. m(t) non-increasing:
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e For the metric u*6§, where u(z) = a+ ﬁ +0O(|z|~?%) near co, the ADM mass m (u* > (dx;)?) =
2ab.

Proof: u* " (dz;)? = a*(1 + ﬁ + O(\m\*z))zl(da;i)z. Let y; = a’x;, then metric changes to
4
(1+ 2+ Oyl ™)) [dyl*.

Iyl
° g = (utv)45 near co. Since u; is harmonic near oo,
t _
w(o) = a(t) + 55 + 0(al ).

Counting the expansion for v above,

() +o®)3)

]

(w0) () = a(t) +

So the AMD mass

To show m/(t) < 0, we only need to show m/(0) < 0.
hd %‘t:(]“t(l‘) =wvo(z) = /(0) + % + [.0.t.. Where

A’UO:O, OI’IM\EQ;
{ vg =0, on Xy

vo(x) — —1, atoo.

So &/(0) = —1. Using up = 0 = «(0) = 1, 3(0) = 0, hence
m’(0) = —2B(0) + 2a(0)5(0) — 2mg = 2'(0) — 2mo.

e To show that 7/(0) < 0, we double (M,dM = %) along OM to get M = M U |sM_,, where
M_; ~ M. Do an odd reflection for vy, such that vo(z) = —vg(z*), where x* is the reflection

of z under M_; — M. Let
1 - UO 4
9 ) go-

9=

Here 1‘% — 1 at oo, and PUTO(I) =1- 52|($0|) +O(|x|72) as & — +o00. This conformal change
collapses the infinity oo of (M_1, go) to a single point. Then we get a complete manifold with
a single asymptotically flat end (M , ). The harmonicity of vy implies that R = 0. Applying
the Positive Mass Theorem, == 11 > 0. Since 1/ = mg — 3'(0) by the expansion of 152, =

m’(0) = 2(8(0) —mo) < 0.
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