Lec 3/24

Last time: solids of known cross-section

Poll Calculate volume of solid whose base is the region bounded by \(x = 1, \ y = 0, \ x = y, \) and whose cross sections perpendicular to the \(x \)-axis are squares.

Rotated over:

Volume of solid
\[
\int_0^1 x^2 \, dx
\]

\[
= \frac{x^3}{3} \bigg|_0^1
\]

\[
= \frac{1}{3} - 0 = \frac{1}{3}
\]
EX Calculate volume of solid whose base is the region bounded above by \(y = x^2 \), below by \(y = -x^2 \), and on sides by \(x = 0 \), \(x = 1 \); and whose cross sections perpendicular to the \(x \)-axis are squares.

Volume of solid:

\[
\int_0^1 (2x^2)^2 \, dx
\]

\[
= 4 \int_0^1 x^4 \, dx
\]

\[
= 4 \left[\frac{x^5}{5} \right]_0^1
\]

\[
= \frac{4}{5}
\]

Q: What is length of the curve under \(y = f(x) \) between \(a \) and \(b \)?
Idea: Approximate a curve by many small line segments.

Pythagorean theorem:

\[b = f'(x) \, dx \]

Length of line segment:

\[h = \sqrt{(dx)^2 + (f'(x) \, dx)^2} \]

\[= dx \sqrt{1 + (f'(x))^2} \]

Arc length: sum of lengths of the line segments as \(dx \) gets small

\[= \int_a^b \sqrt{1 + (f'(x))^2} \, dx \]

Example: What is arc length of the curve \(y = 2x^{3/2} \) over \([0, 1]\)?

\(f(x) = 2x^{3/2} \), \(f'(x) = 2(\frac{3}{2})x^{1/2} = 3x^{1/2} \)

Power rule for derivatives:

\[\frac{d}{dx} (2x^{3/2}) = 3x^{1/2} \]

Arc length:

\[= \int_0^1 \sqrt{1 + (3x^{1/2})^2} \, dx \]

\[= \int_0^1 \sqrt{1 + 9x} \, dx \]
\[
\int_0^1 \sqrt{1+9x} \, dx = \frac{1}{9} \int \sqrt{u} \, du = \frac{1}{9} \int u^{1/2} \, du = \frac{1}{9} \left[\frac{2}{3} u^{3/2} \right] = \frac{2}{27} (1+9x)^{3/2}
\]

Problem Find arc length of the curve \(y = 3x + 1 \) over interval \([0,1] \).

\(f(x) = 3x + 1 \), \(f'(x) = 3 \)

Arc length = \(\int_0^1 \sqrt{1 + (f'(x))^2} \, dx \)

\[
= \int_0^1 \sqrt{1 + 3^2} \, dx = \int_0^1 \sqrt{10} \, dx
\]

\(\sqrt{3^2 + 1^2} = \sqrt{10} \)

\(\sqrt{10} \times 1_0^1 = \sqrt{10} \)

Area

\[\text{Area} = \frac{1}{2} (6 - a)\]

\(a = \sqrt{10} \times x \)
Ex Compute arc length of \(y = x^2 \) over the interval \([0, 1]\).

\[f(x) = x^2, \quad f'(x) = 2x \]

\[
\text{Arc length} = \int_0^1 \sqrt{1 + (f'(x))^2} \, dx
\]

\[
= \int_0^1 \sqrt{1 + (2x)^2} \, dx
\]

Don't know how to do yet!