Homework 7: MAT 331

Due: 11:59pm, Tuesday, 4/02/2019
Part of this homework is written and part is programming. You will submit everything via Blackboard. You will upload a single pdf file called prob1prob2.pdf that contains written solutions to Problems 1 and 2 below. You can make this pdf file in any number of ways, including using a word processor and exporting to pdf, or by scanning hand-written solutions.

For Problem 3, you will submit a single Jupyter notebook file called prob3.ipynb.

Background: All the problems concern a fractal called the Sierpinski carpet \mathcal{C}, defined as the limit of the sets \mathcal{C}_{n}, which are shown below in blue. We start with \mathcal{C}_{0} a solid square, and then obtain \mathcal{C}_{i} by dividing \mathcal{C}_{i-1} into squares, and removing the middle (1/9)th of each square. The limit object \mathcal{C} consists of all points of the original square that are never removed.

Figure 1: Iterates converging to \mathcal{C}.

Problems

1. Compute the area of the Sierpinski carpet \mathcal{C} by computing the limit of the areas of the \mathcal{C}_{i}.
2. Compute the fractal dimension of the Sierpinski carpet \mathcal{C} (see HW6 for the definition of fractal dimension.)
3. (Worth 10 points, double the usual) Write a program to draw iterates of the Sierpinski carpet. You should make a function
```
sierp_carp(basept, size, iter)
```

that takes in basept of the form (x, y) and outputs a copy of $\mathcal{C}_{\text {iter }}$ of size proportional to size and whose left endpoint is at (x, y).

Submit a single Jupyter notebook file called prob3. ipynb containing your program.

