Homework 7: MAT 331

Due: 11:59pm, Tuesday, 4/02/2019

Part of this homework is written and part is programming. You will submit everything via Blackboard. You will upload a single pdf file called prob1prob2.pdf that contains written solutions to Problems 1 and 2 below. You can make this pdf file in any number of ways, including using a word processor and exporting to pdf, or by scanning hand-written solutions.

For Problem 3, you will submit a single Jupyter notebook file called prob3.ipynb.

Background: All the problems concern a fractal called the *Sierpinski carpet* C, defined as the limit of the sets C_n , which are shown below in blue. We start with C_0 a solid square, and then obtain C_i by dividing C_{i-1} into squares, and removing the middle (1/9)th of each square. The limit object C consists of all points of the original square that are never removed.

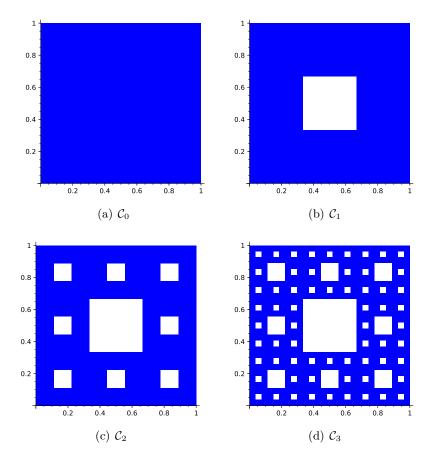


Figure 1: Iterates converging to \mathcal{C} .

Problems

- 1. Compute the area of the Sierpinski carpet C by computing the limit of the areas of the C_i .
- 2. Compute the fractal dimension of the Sierpinski carpet $\mathcal C$ (see HW6 for the definition of fractal dimension.)
- 3. (Worth 10 points, double the usual) Write a program to draw iterates of the Sierpinski carpet. You should make a function

```
sierp_carp(basept, size, iter)
```

that takes in **basept** of the form (x, y) and outputs a copy of C_{iter} of size proportional to size and whose left endpoint is at (x, y).

Submit a single Jupyter notebook file called prob3.ipynb containing your program.