

Number Theory Background

MAT 331, Spring 2019

February 27, 2019

Definition 0.1. For integers a, b, n , we write $a \equiv b \pmod{n}$ if n divides $a - b$.

(The Python/Sage command `a%n` computes the unique integer b between 0 and $n - 1$ that $a \equiv b \pmod{n}$).

Definition 0.2. If a, n are integers, an inverse of a modulo n is an integer b such that $ab \equiv 1 \pmod{n}$.

Theorem 0.1. *Let a, b be integers. Then a has an inverse modulo n if and only if a, n are relatively prime (i.e. share no common divisors).*

Some examples:

- 2 is invertible modulo 9. In fact $2 * 5 \equiv 1 \pmod{9}$, so 5 is the inverse.
- 6 is *not* invertible modulo 9. This is because 6, 9 share a common factor, 3, so they are not relatively prime.

In the case that a, n are relatively prime, an inverse can be found using the Extended Euclidean Algorithm. Recall that if we apply this algorithm to (a, n) , it returns integers d, e, f such that $ae + nf = d$, where $d = \gcd(a, n)$. Since a, n are relatively prime, $\gcd(a, n) = 1$. Hence we get that $ae + nf = 1$. Reducing this equation modulo n gives $ae \equiv 1 \pmod{n}$, which means that e is the inverse of a modulo n .

Theorem 0.2 (Fermat's little theorem). *Let p be prime, and a be an integer relatively prime to p (since p is prime, this just means that p does not divide a). Then*

$$a^{p-1} \equiv 1 \pmod{n}.$$

Example: $3^{16} \equiv 1 \pmod{17}$.

This can be generalized to the case when p is not prime. We define the Euler totient function $\phi(n)$ to be the number of positive integers less than n that are relatively prime to n .

Theorem 0.3 (Euler). *Let a, n be relatively prime positive integers. Then*

$$a^{\phi(n)} \equiv 1 \pmod{n}.$$

Example: The positive integers less than 10 that are relatively prime to 10 are 1, 3, 7, 9, so $\phi(10) = 4$. Taking $a = 3$, $n = 10$, we get that $3^4 \equiv 1 \pmod{10}$.

Theorem 0.4 (Prime Number Theorem). *Let $\pi(N)$ denote the number of primes less than N . Then*

$$\pi(N) \sim N/\log N$$

This notation means that $\lim_{N \rightarrow \infty} \frac{\pi(N)}{N/\log N} \rightarrow \infty$.

The above result can be interpreted as follows: a randomly chosen integer near n has probability $1/\log n$ of being prime. For us, the relevance of this is that prime numbers are fairly common, since $\log n$ does not grow very quickly.

Primality Testing: Consider the problem of determining whether a given integer of n digits is prime. There are (sophisticated) algorithms that solve this problem in time $p(n)$, where p is a polynomial. (The “trial-division” algorithm that you implemented in a previous homework takes time exponential in n).

On the other hand, factoring is conjectured to be harder.

Conjecture 0.1. *There is no algorithm that will factor an n digit integer into primes that runs in time polynomial in n .*

Modular exponentiation: The “repeated squaring” function `exp_mod` we wrote in class computes $a^e \% b$ in time that is a polynomial in a, e, b .

On the other hand, doing the opposite, i.e. taking discrete logarithms, is conjectured to be hard.

Conjecture 0.2. *There is no algorithm that, given a, b, c , will compute e such that $c = a^e \% b$ (assuming such an e exists) and that runs in time polynomial in a, b, c .*