Number Theory Background

MAT 331, Spring 2019
February 27, 2019

Definition 0.1. For integers a, b, n, we write a = b mod n if n divides a — b.

(The Python/Sage command a%n computes the unique integer b between 0
and n — 1 that a = b mod n).

Definition 0.2. If a,n are integers, an inverse of a modulo n is an integer b
such that ab = 1 mod n.

Theorem 0.1. Let a,b be integers. Then a has an inverse modulo n if and only
if a,n are relatively prime (i.e. share no common divisors).

Some examples:
e 2 is invertible modulo 9. In fact 25 =1 mod 9, so 5 is the inverse.

e 6 is not invertible modulo 9. This is because 6,9 share a common factor,
3, so they are not relatively prime.

In the case that a,n are relatively prime, an inverse can be found using the
Extended Euclidean Algorithm. Recall that if we apply this algorithm to (a,n),
it returns integers d, e, f such that ae +nf = d, where d = gcd(a,n). Since a,n
are relatively prime, ged(a,n) = 1. Hence we get that ae + nf = 1. Reducing
this equation modulo n gives ae = 1 mod n, which means that e is the inverse
of a modulo n.

Theorem 0.2 (Fermat’s little theorem). Let p be prime, and a be an integer
relatively prime to p (since p is prime, this just means that p does not divide
a). Then

a?~' =1 mod n.

Example: 31 =1 mod 17.

This can be generalized to the case when p is not prime. We define the Euler
totient function ¢(n) to be the number of positive integers less than n that are
relatively prime to n.

Theorem 0.3 (Euler). Let a,n be relatively prime positive integers. Then

a®™ =1 mod n.



Example: The positive integers less than 10 that are relatively prime to 10
are 1,3,7,9, so ¢(10) = 4. Taking a = 3, n = 10, we get that 3* = 1 mod 10.

Theorem 0.4 (Prime Number Theorem). Let w(N) denote the number of
primes less than N. Then
m(N) ~ N/log N

This notation means that limy_ oo % — 0.

The above result can be interpreted as follows: a randomly chosen integer
near n has probability 1/logn of being prime. For us, the relevance of this is
that prime numbers are fairly common, since logn does not grow very quickly.

Primality Testing: Consider the problem of determining whether a given

integer of n digits is prime. There are (sophisticated) algorithms that solve this

problem in time p(n), where p is a polynomial. (The “trial-division” algorithm

that you implemented in a previous homework takes time exponential in n).
On the other hand, factoring is conjectured to be harder.

Conjecture 0.1. There is no algorithm that will factor an n digit integer into
primes that runs in time polynomial in n.

Modular exponentiation: The “repeated squaring” function exp_mod we
wrote in class computes a® 7% b in time that is a polynomial in a, e, b.

On the other hand, doing the opposite, i.e. taking discrete logarithms, is
conjectured to be hard.

Conjecture 0.2. There is no algorithm that, given a,b, c, will compute e such
that ¢ = a® % b (assuming such an e exists) and that runs in time polynomial
mn a,b,c.



