Spring 2019 Project 2 MAT 331

Project 2: The Inverse Iteration Method for drawing Julia sets
Due: 11:59pm, Thursday, April 25

Background

In this project, you will draw the Julia set of polynomials using a different algorithm than the one

we used in class. Recall that the Julia set for a polynomial f is defined as
J(f) = boundary of {z € C: lim f°"(z) = oo}.
n—oo

The algorithm we used in class (for both colored and uncolored versions) tried to directly draw the
set {z € C: lim,,o f°"(2) = o0} by testing grid points z in a fine grid and computing higher and
higher iterates of them. In HWO09, you adapted this algorithm so that it approximates the boundary,
which is J(f). We will call this the Boundary Scanning Method (BSM). This worked fairly well,
but it was hard to say for sure whether any given point z is in J(f), since it might be the case that
z does eventually escape to infinity, but only after wandering around for a high number of iterates.
Occasionally the pictures produced by BSM can be very misleading.

The following gives an alternative description of the Julia that seems quite different:

Theorem 1. Let f be a polynomial, and zy € J(f). Then

J(f) =A{w: for(w) = zg for some non-negative integer n}.

In other words, if we already know some zq in the Julia set, we can find the whole Julia set by
finding all points w that eventually get mapped to zp under some iterate of f. The line above the
set in the theorem means that we take the closure of the set, i.e. we add in all points that can be
approximated arbitrarily well by points in the set. For the purposes of drawing, taking the closure
doesn’t change anything. The proof of the above theorem is beyond the scope of this course, but
we can nevertheless use it to get an algorithm for drawing.

The sets in the above theorem are still (usually) infinite, but we can approximate them by finite

sets. For N a large integer (and any zy € J(f)), we have the approximation
J(f) = In(f) ={w: f7"(w) = 2o for some non-negative integer n < N}.

The set Jn(f) on the right is always finite. The Inverse Iteration Method (IIM), which you will
implement, involves drawing this set Jy(f). One advantage of IIM is that the points that it draws
are definitely in the Julia set (on the other hand, a very large N will be needed to find some points).

Compare this to BSM, which will sometimes draw points that are not actually in the Julia set.

Page 1 of

Spring 2019 Project 2 MAT 331

Programming tasks [70 pts]

(1)

(5)

(6)

[10 pts] To implement IIM, we must first find a point zy € J(f). It is a fact that for any
polynomial f, if f(p) = p and either |f'(p)| > 1 or f'(p) = 1, then p is in J(f). Here f'(p) is
the derivative of f evaluated at p (a complex number). For a polynomial f.(z) = 22 + ¢ from

the quadratic family, such a point p always exists. Write a (small) program to find such a p for

Je-

[15 pts] Using the zp = p € J(f.) you found in the previous part, implement IIM for the
quadratic family by computing the set Jy(f.) defined above as a list of complex numbers.
As the name Inverse Iteration Method suggests, you will find all preimages of zy (i.e. all w
with f(w) = 2p), and then all preimages of those points, etc. Then plot this list using Sage’s

list_plot function or something similar.

[5 pts] Draw a plot of J(f.) for ¢ = 0.25,7,—0.12 + 0.74i and one other ¢ of your choice using
your code from .

[15 pts] Modify your IIM algorithm from so that instead of producing a list, it produces a
grid represented as an array (as we did for draw_julia in class), where a grid square is assigned
the value 1 if Jy(f) contains some point in that grid square, and 0 otherwise. Then plot this
grid using matrix_plot or something similar. This will produce an image with fewer “bunched

together points”.

[5 pts] Draw a plot of J(f.) for ¢ = 0.25,7,—0.12 + 0.74i and one other ¢ of your choice using
your code from .

[10 pts] Make one of the modifications or generalizations to your IIM code from the list below:

(a) Make your algorithm work for any polynomial f of any degree. You will still use Theorem
and the sets Jy(f), but the technique you used in (1) to find zy will need to be modified.
You can use the fact that for any polynomial f, if there is some integer n with f°"(p) = p
and |(f°")'(p)| > 1, then p is in J(f). It is also true that any polynomial has such a p

with a fairly small n.

(b) Modify ITM so it produces a better image in less time by having your algorithm stop taking
preimages early for certain points. One of the issues with IIM is that, although Theorem
guarantees that the sets Jy(f) will eventually get close to all points of J(f), certain
points will be “popular” (i.e. many points of Jx(f) will come very close, even for small
N), while other points of J(f) will be “unpopular” (i.e it may take a large N for Jy(f)
to come close). The idea of this improvement is to stop taking iterated preimages of some

popular points, which will make the algorithm faster thus allowing you to use a higher

Page 2 of

Spring 2019 Project 2 MAT 331

N. One way to do this is to use your grid from to keep track of the number of points
among those from Jy(f) that you have computed so far that land in that grid square.
Then stop taking preimages of a point that lands in a grid square that has already been
hit too many times. You will have to decide how to define “too many times”; experiment

with different choices.

(c¢) Use “random preimages” to produce a better image in less time. This is meant to address
the issue that some points in J(f) will not be close to any points of Jy(f) unless N is
large. To implement this, in above, choose one of the preimages randomly, and ignore

the other one. This will allow you to use a much larger N.

(7) [10 pts] Make an improvement or enhancement of your choice to your IIM algorithm.

Written report [30 pts]

The report should include:

e A comparison of the various algorithms you implemented in , , @, , as well as the
method we used in class. You should discuss qualitative differences in the images generated.

You should also discuss differences in efficiency /run-time.
e A detailed written description of the modification/generalization you made for task (6.
e A detailed written description of the improvement /enhancement you made for task (7).

e Any unexpected programming or math challenges you encountered doing the assignment.

What to turn in

You will submit everything on Blackboard. Include the following:

e A .ipynb notebook file named code_firstname_lastname.ipynb with all your code from the
Programming tasks section. Make sure to clearly separate the various parts. Also, test this

notebook by restarting it and running from the beginning; this should produce no errors.

e Added 4/25: HTML file no longer needed. HTML file name code_firstname_lastname.html
that you generate by coverting your notebook above to HTML (in Jupyter, do File->Download
as—>HTML). All your images should be visible when we open this with a web browser.

e A pdf file named report_firstname_lastname.pdf with your Written report. The exact
format of this report is up to you. It can be hand-written (legibly) and then scanned (legibly)
into a pdf document. Or it can be be made on a computer. It must be in pdf form (it is

generally easy to convert other forms such as .doc to pdf).

Page 3 of

Spring 2019 Project 2 MAT 331

Hints/advice

e Recursion will often result in simple, elegant code. But for certain parts of the above, it may

be more suitable to use a loop (particularly (6) part (c)).

e Particularly for (6) part (a), you may want to use some of the functions for dealing with
polynomials included in the package numpy. For instance, polyval is useful for composing
polynomials and polyder is good for taking derivatives. You can find good documentation
online. Added 4/23: You may also want to use the roots function, which numeri-

cally finds roots of polynomials.

e You can time a command by placing %time at the beginning of the line.

Page 4 of

