
Spring 2019 Proj 3 MAT 331

Project 3: Giant component of a random graph
Due: 11:59pm, Sunday, May 19

Collaboration Policy You can discuss topics related to programming or graphs with your class-
mates or others. You may also do research on the internet or from books (this is certainly not
required). But you must design and write your own algorithms and write your own report. In
particular, you should understand how your code works and be able to justify your design choices.

Introduction

In this project you will explore “giant component” of a random graph. Recall that the vertices of
an (undirected) graph G can be partitioned into sets called connected components, such that every
pair of vertices in each set can be joined by a path consisting of edges of the graph, and no pair of
vertices from different sets can be joined by such a path. The number, size, and structure of the
connected components are important properties of graphs that arise when modeling networks.

You will investigate the relationship between the connected components (particularly the size
of the largest one - the giant component) in a random graph and the number of edges in the graph.
With few edges, all the connected components are small and there are many of them. As the
number of edges increases, eventually it is very likely that the graph will be connected (i.e. have
a single connected component). But between these two extremes there is a transition point when
the graph starts to have one large component, and many smaller ones. You will empirically explore
this transition point.

Programming tasks [70 pts]

(1) [15 pts] Write code that generates a random graph G with n vertices, where each edge appears
with probability p. This means that two distinct vertices are connected to each other with an
edge with probability p.

(2) [5 pts] Plot visual representations of random graphs for various values of n up to 50, and
various values of p. You can use the package networkx or some other way of plotting.

(3) [20 pts] Write code that takes in a graph G and returns a list of the connected components.
You can choose how you represent the graph; you want to be able efficiently compute the
connected components. Test out the code on some of the graphs you generated in the previous
part.

(4) [10 pts] Optimize your code from the previous part (if necessary) so that you can compute
the connected components of random graph G with n = 1000, and p = 1/1000 in a few seconds

Page 1 of 3



Spring 2019 Proj 3 MAT 331

or less. Write a function that takes in a graph and outputs the size of the giant component
(measured in number of vertices). Test this for a random graph with n = 1000, and p = 1/1000.

(5) [10 pts] You will now see what happens to the size of the giant component of random graphs for
p near 1/n. If p = 1/n, then the number of edges hitting a vertex v (the degree of v) is around 1.
Compute the size of the giant component for random graphs with n = 10, 50, 100, 250, 500, 1000,
and p = t/n where t ranges from 0 to 4 in steps of size 0.05. Do 20 trials for each of the possible
(n, p) values and take the average of the size of the giant component over those 20 trials.
Generate a plot of your results, with one curve for each of the possible values of n. Make the
x-axis the value of pn (which is the average degree of a vertex), and the y-axis the value of the
size of giant component divided by n.

From this plot, you should see the emergence of a giant component as p increases from below
1/n to above this threshold.

(6) [10 pts] Do experiments and create a plot as in the previous part, but this time instead of
computing the size of giant component, compute the ratio of the size of the giant component
to the size of the second largest component.

This quantity should also experience a transition around p = 1/n; below this threshold the giant
component isn’t much bigger than the second largest component, while above the threshold,
the giant component gets much bigger than the second largest component.

Analysis and report [30 pts]

• Describe the algorithm that you used to compute connected components in (3). How do you
think the running time would scale with the number of vertices n and the number of edges in
the input graph?

• Describe any optimizations you had to make in (4) to meet the run-time condition.

• Interpret the results about the size of the giant component you computed in (5). What kind
of transition occurs around p = 1/n? What do you think would happen if you were able to
test random graphs with very large n?

• Interpret the results from (6).

• What are some other questions about properties of random graphs that you could explore in
a similar fashion?

Page 2 of 3



Spring 2019 Proj 3 MAT 331

What to turn in

You will submit everything on Blackboard. Include the following:

• A .ipynb notebook file named code_firstname_lastname.ipynb with all your code from the
Programming tasks section. Make sure to clearly separate the various parts. Also, test this
notebook by restarting it and running from the beginning; this should produce no errors.

• A pdf file named report_firstname_lastname.pdf with your work from the Analysis and
report section. The exact format of this report is up to you. It can be hand-written (legibly)
and then scanned (legibly) into a pdf document. Or it can be be made on a computer. It
must be in pdf form (it is generally easy to convert other forms such as .doc to pdf).

Page 3 of 3


