
Number Theory Notes

MAT 331, Spring 2020

March 10, 2020

Definition 0.1. For integers a, b, n, we write a ≡ b mod n if n divides a− b.

(The Python/Sage command a%n computes the unique integer b between 0
and n− 1 such that a ≡ b mod n).

Definition 0.2. If a, n are integers, an inverse of a modulo n is an integer b
such that ab ≡ 1 mod n.

Theorem 0.1. Let a, b be integers. Then a has an inverse modulo n if and only
if a, n are relatively prime (i.e. share no common divisors).

Some examples:

• 2 is invertible modulo 9. In fact 2 ∗ 5 ≡ 1 mod 9, so 5 is the inverse.

• 6 is not invertible modulo 9. This is because 6, 9 share a common factor,
3, so they are not relatively prime.

In the case that a, n are relatively prime, an inverse can be found using the
Extended Euclidean Algorithm (implemented in Sage as xgcd). Recall that if
we apply this algorithm to (a, n), it returns integers d, e, f such that ae+nf = d,
where d = gcd(a, n). Since a, n are relatively prime, gcd(a, n) = 1. Hence we
get that ae + nf = 1. Reducing this equation modulo n gives ae ≡ 1 mod n,
which means that e is the inverse of a modulo n.

Theorem 0.2 (Fermat’s little theorem). Let p be prime, and a be an integer
relatively prime to p (since p is prime, this just means that p does not divide
a). Then

ap−1 ≡ 1 mod n.

Example: 316 ≡ 1 mod 17.
This can be generalized to the case when p is not prime. We define the Euler

totient function φ(n) to be the number of positive integers less than n that are
relatively prime to n. This is implemented in Sage as euler_phi.

Theorem 0.3 (Euler). Let a, n be relatively prime positive integers. Then

aφ(n) ≡ 1 mod n.

1



Example: The positive integers less than 10 that are relatively prime to 10
are 1, 3, 7, 9, so φ(10) = 4. Taking a = 3, n = 10, we get that 34 ≡ 1 mod 10.

Theorem 0.4 (Prime Number Theorem). Let π(N) denote the number of
primes less than N . Then

π(N) ∼ N/ logN

This notation means that limN→∞
π(N)

N/ logN →∞.

The above result can be interpreted as follows: a randomly chosen integer
near n has probability 1/ log n of being prime. For us, the relevance of this is
that prime numbers are fairly common, since logn does not grow very quickly.

Primality Testing: Consider the problem of determining whether a given
integer of n digits is prime. There are sophisticated algorithms that solve this
problem in time p(n), where p is a polynomial. The Sage function is_prime is
such an algorithm. (The “trial-division” algorithm that you likely implemented
in a previous homework takes time exponential in n).

On the other hand, factoring is conjectured to be harder (on “classical com-
puters”; however if a sophisticated enough quantum computer could be built,
factoring could be achieved much more efficiently. There have recently been
importance advances towards building such a machine).

Assumption/Conjecture 0.1. There is no algorithm that will factor an n
digit integer into primes that runs in time polynomial in n.

Modular exponentiation: The “repeated squaring” function exp_mod we
wrote in class (equivalent to the Sage builtin function power_mod) computes
ae % b in time that is a polynomial in log(a), log(e), log(b).

On the other hand, doing the opposite, i.e. taking discrete logarithms, is
conjectured to be hard.

Assumption/Conjecture 0.2. There is no algorithm that, given a, b, c, will
compute e such that c = ae % b (assuming such an e exists) and that runs in
time polynomial in log(a) log(b), log(c).

Overview of RSA To generate an RSA public key, private key pair, Alice
chooses two large primes p, q (for instance by testing random large numbers using
a fast primality testing algorithm, such as Sage’s is_prime) and an integer b
(we used b = 17) that is relatively prime to (p − 1)(q − 1). She also computes
n = pq. Her public key is (b, n), which she publishes to the world. To generate
her private key, she computes e such that be ≡ 1 mod (p− 1)(q − 1) (using the
Extended Euclidean Algorithm, implemented in Sage as xgcd). This e is her
private key.

If Bob wants to send Alice a message m (which we assume is an integer less
than n), he computes the encrypted message as

mb mod n,

2



which can be done efficiently using the repeated squaring trick (using Sage’s
power_mod).

If Alice receives an encrypted message c, she decrypts it by computing

ce mod n,

using power_mod.

3


