
Spring 2020 Project 2 MAT 331

Project 2: The Inverse Iteration Method for drawing Julia sets
Due: 11:59pm, Tuesday, April 28

Collaboration Policy: You can discuss topics related to the project with your classmates or
others. You may also do research on the internet or from books (this is certainly not required). But
you must design and write your own code and report. In particular, you should understand how
your code works, and be able to justify your design choices.

Background

In this project, you will draw the Julia set of polynomials using a different algorithm than the one
we used in class. Recall that the Julia set for a complex polynomial f is defined as

J(f) = boundary of {z ∈ C : lim
n→∞

f◦n(z) =∞}.

The algorithm we used in class (for both colored and uncolored versions) tried to directly draw the
set {z ∈ C : limn→∞ f◦n(z) =∞} by testing grid points z in a fine grid and computing higher and
higher iterates of them. We will call this the Boundary Scanning Method (BSM). This worked fairly
well, but it was hard to say for sure whether any given point z is in J(f), since it might be the
case that z does eventually escape to infinity, but only after wandering around for a high number
of iterates. Occasionally the pictures produced by BSM can be very misleading.

The following gives an alternative description of the Julia that seems quite different:

Theorem 1. Let f be a polynomial, and z0 ∈ J(f). Then

J(f) = {w : f◦n(w) = z0 for some non-negative integer n}.

In other words, if we already know some z0 in the Julia set, we can find the whole Julia set by
finding all points w that eventually get mapped to z0 under some iterate of f . The line above the
set in the theorem means that we take the closure of the set, i.e. we add in all points that can be
approximated arbitrarily well by points in the set. For the purposes of drawing, taking the closure
doesn’t change anything. The proof of the above theorem is beyond the scope of this course, but
we can nevertheless use it to get an algorithm for drawing.

The set of all inverse images in the above theorem is still (usually) infinite, but we can approx-
imate them by finite sets. For N a large integer (and any z0 ∈ J(f)), we have the approximation

J(f) ≈ JN (f) = {w : f◦n(w) = z0 for some non-negative integer n ≤ N}.

The set JN (f) on the right is always finite. The Inverse Iteration Method (IIM), which you will
implement, involves drawing this set JN (f). One advantage of IIM is that the points that it draws
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are definitely in the Julia set (on the other hand, a very large N will be needed to find some points).
Compare this to BSM, which will sometimes draw points that are not actually in the Julia set.

Programming tasks [70 pts]

(1) [15 pts] To implement IIM, we must first find a point z0 ∈ J(f). You will use the following
facts:

(i) For any polynomial f , if f(p) = p and either |f ′(p)| > 1 or f ′(p) = 1, then p is in J(f).
Here f ′(p) is the derivative of f evaluated at p (a complex number).

(ii) For a polynomial fc(z) = z2 + c from the quadratic family, such a point p satisfying the
conditions in (i) always exists.

Find, by hand, such a p for the polynomial f(z) = z2+1/4. Then write a Sage function to find
such a p for any fc(z) = z2+ c. The function should take in c as an argument. (HINT: first use
the quadratic formula to find p with fc(p) = p; then test the condition on the derivative).

(2) [20 pts] Using the z0 = p ∈ J(fc) you found in the previous part, implement IIM for the
quadratic family by computing the set JN (fc) defined above as a list of complex numbers. As
the name Inverse Iteration Method suggests, you will find all inverse images of z0 (i.e. all w
with f(w) = z0), and then all inverse images of those points, etc. Then plot this list using
Sage’s list_plot function or something similar.

(Note that fc, being a quadratic polynomial, is not invertible, and z0 will usually have two
inverse images, i.e. two values of w with fc(w) = z0. Given z0, one can compute the inverse
images using a little algebra. Once you have done this, recursion is a good way to iterate the
process of taking inverse images.)

(3) [5 pts] Draw a plot of J(fc) for c = 0.25, i,−0.12+ 0.74i and one other c of your choice using
your code from (2).

(4) [10 pts] Modify your IIM algorithm from (2) so that instead of producing a list, it produces
a grid represented as an array (as we did for julia in class), where a grid square is assigned
the value 1 if JN (f) contains some point in that grid square, and 0 otherwise. Then plot this
grid using matrix_plot or something similar. This will produce an image with fewer “bunched
together points”.

(5) [5 pts] Draw a plot of J(fc) for c = 0.25, i,−0.12+ 0.74i and one other c of your choice using
your code from (4).

(6) [15 pts] Make one of the modifications/generalizations to your IIM code from the list below:
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(a) Make your algorithm work for any polynomial f (not just those of the form z2 + c). You
will still use Theorem 1 and the sets JN (f), but the technique you used in (1) to find z0

will need to be modified. You can use the fact that for any polynomial f , if there is some
integer n with f◦n(p) = p and |(f◦n)′(p)| > 1, then p is in J(f). It is also true that any
polynomial has such a p with a fairly small n.

(b) Modify IIM so that it stops taking inverse images early for certain points. One of the issues
with IIM is that, although Theorem 1 guarantees that the sets JN (f) will eventually get
close to all points of J(f), certain points will be “popular” (i.e. many points of JN (f)

will come very close, even for small N), while other points of J(f) will be “unpopular”
(i.e it may take a large N for JN (f) to come close). The idea of this improvement is to
stop taking iterated inverse images of some popular points, which will make the algorithm
faster thus allowing you to use a higher N . One way to do this is to use your grid from (4)
to keep track of the number of points among those from JN (f) that you have computed
so far that land in that grid square. Then stop taking inverse images of a point that lands
in a grid square that has already been hit too many times. You will have to decide how to
define “too many times”; experiment with different choices.

(c) Use random inverse images to produce a better image in less time. This is meant to
address the issue that some points in J(f) will not be close to any points of JN (f) unless
N is large. To implement this, in (2) above, choose one of the inverse images randomly,
and ignore the other one. This will allow you to use a much larger N .

Written report [30 pts]

The report should include:

• A comparison of the various algorithms you implemented in (2), (4), (6), as well as the
method we used in class. You should discuss qualitative differences in the images generated.
You should also discuss differences in efficiency/run-time.

• A detailed written description of the modification/generalization you made for task (6).

• Any unexpected programming or math challenges you encountered doing the assignment.

What to turn in

You will submit everything on Blackboard. Include the following:

• A .ipynb notebook file named code_firstname_lastname.ipynb with all your code from the
Programming tasks section. Make sure to clearly separate the various parts. Also, test this
notebook by restarting it and running from the beginning; this should produce no errors.
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• A pdf file named report_firstname_lastname.pdf with your Written report. The exact
format of this report is up to you. It can be hand-written (legibly) and then scanned (legibly)
into a pdf document. Or it can be be made on a computer. It must be in pdf form (it is
generally easy to convert other forms such as .doc to pdf).

Hints/advice

• Recursion will often result in simple, elegant code. But for certain parts of the above, it may
be more suitable to use a loop (particularly (6) part (c)).

• Particularly for (6) part (a), you may want to use some of the functions for dealing with
polynomials included in the package numpy. For instance, polyval is useful for composing
polynomials and polyder is good for taking derivatives. You can find good documentation
online. You may also want to use the roots function, which numerically finds roots of poly-
nomials.

• You can time a command by placing %time at the beginning of the line.
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