Homework 6: MAT 364

Collaboration Policy : You may, in fact are encouraged to, work on the problems with other students. You must write up your solutions by yourself.

Submission: Upload a .pdf file using the page for this assignment in Blackboard. You may produce this either (i) electronically, or (ii) by hand, legibly, and then scanned, legibly. It is generally easy to convert a file from some other format, such as .docx, to .pdf.

1. (Kinsey 3.29) Show that the product of two T_{i} spaces is a T_{i} space, for $i=0,1,2$.
2. Let $X_{i}, i=1,2$, be spaces, and \mathcal{B}_{i} a basis for X_{i}. Prove that

$$
\mathcal{B}:=\left\{B_{1} \times B_{2}: B_{1} \in \mathcal{B}_{1}, B_{2} \in \mathcal{B}_{2}\right\}
$$

is a basis for the product topology on $X_{1} \times X_{2}$.
3. Let $X_{i}, i=1,2$, be spaces, and let A_{i} be a subset of X_{i}. There are two natural ways to define a topology on $A_{1} \times A_{2}$: (i) give A_{i} the subspace topology it inherits from the space X_{i}, and then give $A_{1} \times A_{2}$ the product topology, or (ii) give $X_{1} \times X_{2}$ the product topology, and then give $A_{1} \times A_{2}$ the subspace topology it inherits from the space $X_{1} \times X_{2}$. Show that these two topologies coincide.
4. Given a space X with an equivalence relation \sim, we defined the quotient topology on X / \sim by saying that a subset U is open iff $p^{-1}(U)$ is open in X, where $p: X \rightarrow X / \sim$ is the natural quotient map. Show that this does in fact define a topology, i.e. the collection of such U satisfies the three axioms of a topology.
5. (Kinsey 3.35) Show that if X is connected and \sim is an equivalence relation on X, then X / \sim is connected.
6. Find an example of a Hausdorff space X and an equivalence relation \sim on it, such that X / \sim is not Hausdorff.

Optional problem: Is every space X homeomorphic to the quotient of some \mathbb{R}^{n} by some equivalence relation \sim ?

