Connected sets and intermediate value theorem
Def: $X \subset \mathbb{R}^{n}$ is connected if there is no decamp $X=A \cup B$ where
(i) $A \cap B=\varnothing$
(ii) A, B open in X
(iii) $A, B \not \subset \varnothing$

Than If $f: X^{c \mathbb{R}^{n}} \rightarrow \mathcal{P}^{\prime} \subset \mathbb{R}^{m}$ and F is contimons, $\triangle C X$ is connseted, then $F(U)$ is connects. Well use origins def. of continuing: ie $F^{-1}(U)$ is opens

PE

Assume for contradiction that $F(U)$ not open So $F(u)=A \cup B$ satisfying $(i), \mid(i),(i i)$.

$$
u_{A^{\prime \prime}}^{s o} f^{-1}(A), u n F_{B_{1}^{\prime}}^{-1}(B)
$$

- By contimity of $F: u \rightarrow F(M)$,

$$
\begin{equation*}
A^{\prime}, B 1 \text { open } \tag{i}
\end{equation*}
$$

- Also, $U=A^{\prime} \cup B^{\prime}$
- $f^{-1}(A), f^{-1}(B)$ disjoint (since A, B are disjoint) $\Rightarrow A^{\prime}, B^{\prime}$ are disjoint (i)
- B, A uan-empty, both in $f(U)$ A^{\prime}, B^{\prime} are rom-empts (iii)
- I contradiction
$\Rightarrow U$ is not connected,
Appration
Chm (Intermediate Value) Let $F^{\prime}[0,1] \rightarrow \mathbb{R}$ be a continuous function. IF $F(a)=a, f(1)=b$ and c is between a, b, then there exists $x \in[0,1] \quad w / \quad f(x)=C$.

PF - $[0,1]$ is connceted

- By above $f([0,1])$ is also compared, suppose for contr. that c is missed. FLOG $a<b, \quad a<c<b$.

$$
\begin{aligned}
& \text { WCOG } a<b, \quad a<c<b- \\
& V(C 0,1]), \quad\left(V \cap_{11}(-\infty, c)\right) \cup(V \cap(c,+\infty) \\
& \\
& \quad(i) A \cap B=\varnothing \\
& \quad \text { (ii) } A, B \text { open in } V \\
& \text { (ii) } A, B \text { wom-empto since } \\
& \\
& F(0)=a<c \quad f(i) \in B
\end{aligned}
$$

$$
\begin{aligned}
& A_{1} B<c \quad f(1) \in B \\
& F(0)=a<C \\
& f(0) \in A
\end{aligned}
$$

$\Rightarrow V$ is not connected

