CORRECTED Basis for a topology
From last time:
Defn: X set, $T=$ collection of subsets of X then T gives a topology if (il, ϕ are in T (ii) Union of any collection of alts of T (iii) intersection of any finite collection of celts of T is in T

DeF: (X, T) topological spare, bay $C \subset X$ is closed if $X-C$ is open lis. is in ${ }^{-}$ closed it
(Finite unions of closed sets are closed
arbitrary intersections 11
In \mathbb{R}^{n}, we had open balls $D^{u}\left(\underline{\underline{x}}_{1}\right)$ special opense
Def: Let X be a set. A basis for a topology on X is a collection B of subsets of X s.t.

(i) $\forall x \in X, \exists B \in B$ s.t. $x \in B$
(ii) If $x \in B_{1}, B_{2}, B_{1}, B_{2} \in B$, then $\exists B_{3} \in B^{\prime \prime}$ s.t. $B_{3}^{\prime} \subset B_{1} \cap B_{2}$ and $x \in B_{3}$.

Def suppose $B C X$ satisfies (i), (ii) above, then the topology geerevated by B is U, the set T consisting of all $U C X$
w/ property that $\forall x \in U$, $\Rightarrow v \in \omega$ w/ $x \in B, B \subset U$

Claim: T in a bore is in fact a topology
Eg: (1) $X=\mathbb{R}^{n}, T=$ open sets in \mathbb{R}^{n}

$$
\begin{aligned}
& x=\mathbb{R}^{n}, T=\text { open sets in } \mathbb{R}^{n} \quad x \in \mathbb{R}^{n} \\
& B=\text { all balls } D^{n}(x, r) \quad \begin{array}{l}
s \in \mathbb{R}+ \\
B=\mathbb{R}^{n}
\end{array}
\end{aligned}
$$

(2) $X=\mathbb{R}^{n}, \quad T=$ open sacs in \mathbb{R}^{n} $B=$ all balls $D^{n}(x, r)^{\text {s.tall coordinates }}$ of $x_{1} r$ we rational.

