Surfaces - orientability and connect sum
Möbins strip

Tomes

Klein Botlle

Defn: A surface S is non-orientable, it it has a Subspace homeomarphic to a Möbins strip. Othernise, S is orientable (Topological Invariant)
E,g.(G) M:bins strip is mon-orientable
(2) Kleir Botle

(3) Projective Plane

Nou-example
(4) Torus

Orientable
(5) Sphere

(6) Cylinder

Connect Sum

Connect Sum! Start w/ S_{1}, S_{2} surfaces remove a small (open) disk from each, and glue together the circular boundaries

Planar diagraens

(2)

Fact: $S^{2} \# S=S$

9
2-sphere $\begin{gathered}\text { Y' } \\ \text { any surtere }\end{gathered}$

