Polyhedra for which all faces are congruen regular polygons, and the same \#faces come together at each vertex.
(1) Tetrahedron

$$
\begin{array}{ll}
\text { vertices }=4 & U-e+F \\
\text { edges }=6 & =4-6+4=2 \\
\text { faces }=4 &
\end{array}
$$

(2) Cube

$$
\begin{array}{ll}
v=8 & v-e+f \\
e=12 & =8-12+6=2
\end{array}
$$

$$
f=6
$$

(3) Octahedron

$$
\begin{aligned}
& v=6 \\
& e=12 \\
& x=8
\end{aligned}
$$

$$
v-e+F
$$

$$
=6-12+8=2
$$

(4) Icosalue dion

$$
\begin{array}{ll}
v=12 & v-e+F \\
e=6+12+12=30 & =12-30+2 \tau \\
f=10+10=20 & =2
\end{array}
$$

looksidential on of her side, but rotated
(5) Dodecahedron

$$
\begin{array}{ll}
v=10+5+5=20 & 20-30+12 \\
e=10+10+10=30 & =2 \\
f=12 &
\end{array}
$$

looksidential on of hes side, but rotated

Thu: For any polyhedron homed to sphere, $u-e+F=2 k$ Euler characteristic of sphere

