Euler characteristic and surfaces

Note: (I)
$$\chi(nT) = 2-2n$$
, T terms
 $nT = T + ... + T$
(2) $\chi(mP^2) = 2-m$
Since χ is a topological identiant,
 $n_1T \cong n_2T$ if $n_1 \neq n_2$
since $2-2n_1 \neq 2-2n_2$
and $m_1!P^2 \neq m_2!P^2$ if $m_1 \neq m_2$ non-normal
But $\chi(T) \equiv 0 = \chi(P^2 \# P^2)$
(veen!! $P^2 \# P^2$ is Klein
Surfaces (willight boundary), then $S_1 \cong S_2$
if $\chi(S_1) = \chi(S_2)$ and both
are orientable or both hon-orientable,
Paceall: A planar diagram gives a non-orientable
furface if f if has ont least one
two ted pair of edges:

Surfaces with boundary
The IF
$$S_1, S_2$$
 are compact, connect
Surfaces with boundary, then $S_1 \cong S_2$
iff $\chi(S_1) = \chi(S_2)$, both are orientable
or both non-orientable, and S_{11}, S_2 have
Some number of boundary components.

~q

