Euler characteristic and surfaces
Note: (1)

$$
\begin{aligned}
& x(n T)=2-2 n \\
& n T=\underbrace{T \# \ldots \# T}_{m}
\end{aligned}
$$

(2) $X\left(m P^{2}\right)=2-m$

Since X is a topolagical sinaviaut,

$$
n_{1} T \cong n_{2} T \quad \text { if } \quad n_{1} \neq n_{2}
$$

since $\quad 2-2 n_{1} \neq 2-2 n_{2}$

Bux $\chi(T)^{- \text {oriestable }}=0=\chi\left(\mathbb{P}^{2} \# \mathbb{P}^{2}\right)$
(rceall $\mathbb{P}^{2} \# \mathbb{P}^{2}$ is tecan bothe)
Thm: IF S_{1}, S_{2} are compoet, conneeted surfaves (withont boundary), then $S_{1} \cong S_{2}$ iff $X\left(S_{1}\right)=X\left(S_{2}\right)$ and both are orientable or both mon-orientable.

Recall: A planar diagram gives a non-ovientestle surface iff it has at least ome twisted pair of edges:

Surfaces with boundary
Thu If S_{1}, S_{2} are compact, conerect Surfaces with boundary, then $S_{1} \cong S_{2}$ iff $X\left(S_{i}\right)=X\left(S_{2}\right)$, both are orientable or bottle nam-ovientable, and S_{1}, S_{2} have Same number of boundary components.

WARN TEE :

