Want: invariants for topological spaces (egg. Euler characteristic)

Coops.

Can compose loops based at same p^{7}

Based loops on X, base point $p \in X$

$$
\begin{aligned}
& \gamma:[0,1] \rightarrow X \\
& \gamma(0)=p=\gamma(1)
\end{aligned}
$$

Def: γ, γ^{\prime} based loops on (X, p) are hometopic if $\exists \gamma_{t}$ based loops on (X, P), Fo, $t \in[0,1]$ s.t. $\gamma_{0}=\gamma, \quad \gamma_{1}=\gamma^{\prime}$ and γ_{t} depends contimously on t.

Def: If γ based loop on $(X, 1$ $[\gamma]:=\left\{\gamma^{\prime}\right.$: γ^{\prime} is hantepic to γ. "Cometopy dis of $\gamma^{\prime \prime}$
DeF: Let X be space, $p \in X$, $\ldots \ldots .1$ - $S r x 7: \gamma$ based loop
denote $\left.-\Pi_{1}(X, P)-L L \cdot \operatorname{on}(X, P)\right\}$
"Fundamental group" (as a set).

Eg. (1)

Any based loop γ on ($\left.B^{2}, P\right)$ is hamotopic to constant looppat p

$$
[0,1] \ni x \mapsto p
$$

So just one lomotopy class [γ p -

$$
\pi_{1}(X, p)=\{[\gamma p]\}
$$

"trivial" one element
(2) cylinder C

$$
\begin{aligned}
& 1 \text { time } \\
& \text { o times }
\end{aligned}
$$

$$
\begin{aligned}
\pi_{1}(C, p) & =\{\ldots,-2,-1,0,1,2,3, \ldots \\
& =\mathbb{Z}
\end{aligned}
$$

$$
p \in X, q \in Y
$$

Note: If Y, Y are homeomorpluc, then $\pi_{1}(X, p)$ has same cardinality as $\pi_{1}(\varphi, q)$
(so B^{2} not hameomouplic C)

