Based loops and composition

Want: invariants For topological spaces (e.g. Enler Characteristic) Coops. (up to home topy (an compose loops based at same pt Based 100ps on X, base point PEX Y: CO, J >X $\gamma(0) = P = \gamma(1)$ Des: X, X' based loops on (X, P) are <u>hometopic</u> if $\exists \chi_{\ell}$ based loops on (χ, ρ) , For $\ell \in [0, 1]$ 5.6. $\chi_{0} = \chi, \chi_{1} = \chi'$ and it depends continuously on t. Def: IF & based loop on [X,1) [y]:= [y]: y' is hourtopic to y "Chomotopy class of 8" Cet X be space, PEX, - min 1 ~ Sry7: & based loop

denote
$$\Pi_1(X,P) - 2 U$$
 on (X,P) ?
"Fundamental group" (as a set).
Eg. P and P based toop X
on (B^3, P) is homotople
to constant boop both P
 $T_0(X,P) = ECYPJ$?
"Invial" One element
Chindler C $\Pi_1(C,P) = \{\dots, 2, -1, 0, 1, 2, 3, \dots$
I three O time D are homeomorphic,
three $\Pi_1(X,P)$ has same condimiting
as $\Pi_1(Y, P)$ has same condimiting
 $A = T_1(Y, P)$
 $A = T_1(Y, P)$