Homework 01: MATH 4180

Collaboration Policy : You may, in fact are encouraged to, work on the problems with other students. You must write up your solutions by yourself.

Note: This may not be representative of a typical homework, since we haven't covered much material yet.

1. Show that if z is a root of a polynomial with real coefficients, then \bar{z} is also a root (i.e. the roots come in conjugate pairs).
2. Does every polynomial with real coefficients and odd degree have a real root?
3. Recall that given $z \in \mathbb{C}$, we define a map $\phi_{z}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, by $w \mapsto z w$, where we are using the standard identification of \mathbb{R}^{2} with \mathbb{C}. Does every linear map $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ equal ϕ_{z} for some $z \in \mathbb{C}$?
4. Express all complex solutions of the equation $z^{6}=1$ in terms of trig functions. Draw a picture of the solutions.
5. Prove that if θ is not a multiple of π, then

$$
\sin \theta+\sin 2 \theta+\cdots+\sin n \theta=\frac{\sin \left(\frac{n+1}{2} \theta\right) \sin \left(\frac{n}{2} \theta\right)}{\sin (\theta / 2)} .
$$

(Hint: geometric series)

