Homework 3: MATH 4180

Collaboration Policy : You may, in fact are encouraged to, work on the problems with other students. You must write up your solutions by yourself.

- 1. Let $f : \mathbb{C} \to \mathbb{C}$ be given by f(z) = |z|. Determine the set of points in \mathbb{C} at which f is complex differentiable.
- 2. Consider the function $f : \mathbb{C} \to \mathbb{C}$ given by $f(z) = 4z^5 + 5z^4$. Determine the set of points in \mathbb{C} at which f is conformal.
- 3. Let $f : \mathbb{C} \to \mathbb{C}$ be a holomorphic function. Show that $z \mapsto \overline{f(\overline{z})}$ is also a holomorphic function $\mathbb{C} \to \mathbb{C}$.
- 4. Given an example of a function $f: D(0,1) \to \mathbb{C}$ (recall that D(0,1) is the open disc of radius 1 with center at 0) such that f is conformal everywhere on D(0,1), but there exists a line segment in D(0,1) whose image under f is not a line segment.
- 5. Find an example of a holomorphic function $f: D(0,1) \to \mathbb{C}$ that is conformal everywhere on D(0,1) but f' is not.