Homework 4 : MATH 4180

Collaboration Policy : You may, in fact are encouraged to, work on the problems with other students. You must write up your solutions by yourself.

1. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be given by

$$
f(z)= \begin{cases}z^{5} /|z|^{4} & \text { if } z \neq 0 \\ 0 & \text { if } z=0\end{cases}
$$

Write $f(x+i y)=u(x, y)+i v(x, y)$. Prove that the partials of u, v exist in a neighborhood of 0 , and the Cauchy-Riemann equations hold at 0 , but that f is not complex differentiable at 0 . Why does this not contradict the theorem about Cauchy-Riemann equations?
2. Given $f: \mathbb{C} \rightarrow \mathbb{C}$ real-differentiable, define

$$
\frac{\partial f}{\partial \bar{z}}:=\frac{1}{2}\left(\frac{\partial f}{\partial x}-\frac{1}{i} \frac{\partial f}{\partial y}\right) .
$$

Prove that $\partial / \partial \bar{z}$ satisfies the sum and product rules for differentiation. Show that the CauchyRiemann equations are equivalent to $\partial f / \partial \bar{z}=0$.
3. Let $U=\mathbb{C}-\{z: \operatorname{Im}(z)=0, \operatorname{Re}(z) \leq 0\}$ be the plane with non-positive real ray removed. Define $f: U \rightarrow \mathbb{C}$ in polar coordinates by

$$
f\left(r e^{i \theta}\right)=\log r+i \theta
$$

where θ is chosen to lie in $(-\pi, \pi)$. Show this function is holomorphic and compute its derivative.
4. Compute the derivative of the local inverse of $f: \mathbb{C} \rightarrow \mathbb{C}, f(z)=\sin z$ on a neighborhood of 0.
5. Is there an open set U in \mathbb{C} such that $f: U \rightarrow \mathbb{C}$ given by $f(z)=\sin \bar{z}$ is holomorphic?

