Homework 6: MATH 4180

Collaboration Policy : You may, in fact are encouraged to, work on the problems with other students. You must write up your solutions by yourself.

1. Let γ be the circle of radius 5 centered at 0 , oriented clockwise. Compute

$$
\int_{\gamma} \frac{1}{\exp \left(\sin \left(\exp \left(z^{2}\right)\right)\right)} d z
$$

2. Let γ be the circle of radius 1 centered at $5 i$, oriented clockwise, and let $U=D(5 i, 2)$. Define $\log : U \rightarrow \mathbb{C}$ by $\log z=\log r+i \theta$ where $z=r e^{i \theta}$ with $\theta \in[0,2 \pi)$ and $r>0$. Compute

$$
\int_{\gamma} \log z d z .
$$

3. Let γ be the ellipse given by the equation $x^{2} / 9+y^{2} / 49=1$, oriented clockwise. Compute

$$
\int_{\gamma} \frac{1}{z-2} d z
$$

4. Let γ be the circle of radius 12 centered at 0 , oriented counter-clockwise. Prove that

$$
\left|\int_{\gamma} \frac{\cos z}{z} d z\right| \leq 6 \pi
$$

5. Prove or disprove: if $U \subset \mathbb{C}$ is open, $f: U \rightarrow \mathbb{C}$ holomorphic, and γ a C^{1} curve in U, then

$$
\overline{\int_{\gamma} f(z) d z}=\int_{\gamma} \overline{f(z)} d z
$$

