Homework 07: MATH 4180

Collaboration Policy : You may, in fact are encouraged to, work on the problems with other students. You must write up your solutions by yourself.

1. Let γ be the unit circle, oriented counter-clockwise. Compute

$$
\int_{\gamma} \frac{\sin e^{z}}{z} d z \quad \text { and } \quad \int_{\gamma} \frac{\sin e^{z}}{z^{2}} d z
$$

2. Let $U \subset \mathbb{C}$ be an open set bounded by a simple closed C^{1} curve γ. Let f be a holomorphic function on an open set V containing U and γ. Assume that f^{\prime} is continuous on V. For any $z_{0} \in U, z_{0} \notin \gamma$, prove that

$$
\int_{\gamma} \frac{f^{\prime}(z)}{z-z_{0}} d z=\int_{\gamma} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z
$$

where γ is oriented counter-clockwise.
3. Compute

$$
\int_{S^{1}} \frac{\cos z}{z\left(z^{2}+8\right)} d z
$$

where S^{1} is oriented counter-clockwise.
4. Let γ be the circle of radius 10 , oriented counter-clockwise. Compute

$$
\int_{\gamma} \frac{z}{z^{2}+4} d z
$$

5. Compute

$$
\int_{0}^{2 \pi} e^{\cos \theta} \cos (\sin \theta) d \theta
$$

by consider the contour integral $\int_{S^{1}} \frac{e^{z}}{z} d z$.

