Homework 11: MATH 4180

Collaboration Policy : You may, in fact are encouraged to, work on the problems with other students. You must write up your solutions by yourself.

1. Let n be a positive integer, and $p_{1}, \ldots, p_{n} \in D(0,1)$, with $p_{i} \neq 0$ for each i. Suppose $f: D(0,1)-\left\{p_{1}, \ldots, p_{n}\right\} \rightarrow \mathbb{C}$ is holomorphic. Let R be the radius of convergence of the Taylor series of f centered at 0 . Show that if $R<1$, then there exists some p_{i} that lies on $S^{1}(R)$, the circle of radius R centered at the origin, and f has a pole or essential singularity at p_{i}.
2. Show that there exists a pair of connected open sets $U_{1}, U_{2} \subset \mathbb{C}$, two holomorphic functions $f_{1}: U_{1} \rightarrow \mathbb{C}$ and $f_{2}: U_{2} \rightarrow \mathbb{C}$, and two balls $D(p, \delta), D\left(p^{\prime}, \delta\right) \subset U_{1} \cap U_{2}$ such that
(i) $f_{1}(z)=f_{2}(z)$ for all $z \in D(p, \delta)$, and
(ii) there exists $w \in D\left(p^{\prime}, \delta\right)$ such $f_{1}(w) \neq f_{2}(w)$.
3. Let $f, g: D(0,1) \rightarrow \mathbb{C}$ be holomorphic functions, such that g is not identically zero. Show that f / g is either holomorphic at 0 , or has a pole there (in particular, it cannot have an essential singularity).
4. Let $f(z): D(0,1)^{*} \rightarrow \mathbb{C}$ be given by

$$
f(z)=\frac{\cos \left(e^{z}\right)}{z(z-1) \cos \left(z^{2} / 100\right)} .
$$

Let $\sum_{n=-\infty}^{\infty} a_{n} z^{n}$ be the Laurent series for f on $D(0,1)^{*}$. Compute a_{-1}.
5. Compute the Laurent series for

$$
f(z)=\frac{z+1}{z^{5}\left(z^{2}+1\right)}
$$

on the annulus $A_{0.1,0.9}$ centered at 0 .

