Homework 13: MATH 4180

Collaboration Policy : You may, in fact are encouraged to, work on the problems with other students. You must write up your solutions by yourself.

1. Compute

$$\int_{-\infty}^{\infty} \frac{x^{1/3}}{1+x^4} dx.$$

- 2. Let $f_n = \sum_{k=0}^n z^k / k!$. Fix R > 0. Prove that for n large enough (depending on R), f_n has no zeros in D(0, R).
- 3. Let $U \subset \mathbb{C}$ open, and $p \in U$. Let $f : U \{p\} \to \mathbb{C}$ be holomorphic, with a pole at p. Show that $f(U \{p\})$ contains $\mathbb{C} D(0, R)$ for some finite R.
- 4. (Relevant material to be covered May 5.) Find an example of a Mobius transformation f that takes D(0,1) onto D(0,1) and has no fixed point (i.e. there is no point $z \in D(0,1)$ with f(z) = z).
- 5. (Relevant material to be covered May 5.) Let $D' := D(0,1) \{x + iy : x \ge 0\}$ be the half disc. Find a holomorphic bijection $f: D' \to D(0,1)$.