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1 Basic theory of complex numbers

1.1 Complex numbers

Defining property of i: i2 = −1.

Definition 1.1. Arithmetic with complex numbers:

1. Addition: (a1 + b1i) + (a2 + b2i) := (a1 + a2) + (b1 + b2)i

2. Multiplication: (a1 + b1i) · (a2 + b2i) := (a1a2 − b1b2) + (a1b2 + b1a2)i.

Form a field : associative, commutative, distributive, has identity, inverses.

Geometric interpretation of addition. Addition of vectors in R2.

Polar coordinates. Write a+ bi = r (cos θ + i sin θ) .
Here r = |z|, and we call θ the argument arg(z) of z.
(Note that angle θ = arg(z) is only well-defined up to multiples of 2π.)

Multiplication formula:

r1 (cos θ1 + i sin θ1) · r2 (cos θ2 + i sin θ2) = (r1r2) (cos(θ1 + θ2) + i sin(θ1 + θ2)) .

Can think of multiplication by z as a map φz : R2 → R2, w 7→ zw.
Q: What linear operators on R2 arise in this way? A: Those that are com-

positions of rotation and scaling.

De Moivre’s formula: If z = r(cos θ + i sin θ), then

zn = rn (cos(nθ) + i sin(nθ)) .

Geometric interpretation of z 7→ z2: circle gets wrapped around itself twice.

Complex conjugation: a+ bi := a− bi.
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1.2 Exponential and trigonometric functions

Exponential function. Recall that for real x:

ex = 1 + x+ x2/2! + x3/3! + x4/4! + · · ·

We can attempt to use the formula for an imaginary number iy:

eiy = 1 + (iy) + (iy)2/2! + (iy)3/3! + (iy)4/4! + · · ·
= (1− y2/2! + y4/4!− · · · ) + i(y − y3/3! + y5/5!− · · · )
= cos y + i sin y.

So we take this to be the definition for imaginary arguments, i.e. for θ ∈ R, we
have

eiθ = cos θ + i sin θ.

Then, we would like ex+iy = exeiy, and combined with the above, this defines
the exponential function for all complex arguments.

Properties:

• Addition --> multiplication: ez+w = ezew.

• Euler’s formula: eπi = −1.

• Periodicity: ez+2πi = ez.

• ez 6= 0 for all z ∈ C.

Trig functions. From the above, for real y, we have eiy = cos y + i sin y, and
then using the symmetry properties of sin, cos, we get e−iy = cos y − i sin y.
Solving for sin, cos, we get

sin y =
eiy − e−iy

2i
, cos y =

eiy + e−iy

2
.

We can then use these same formulas to define sin z, cos z for any complex z,
since we’ve already defined ez.

Example: cos(10i) = e−10+e10

2 . Note this is a big real number; cos, sin are
unbounded on C.

Trig identities (e.g. sin2 z+cos2 z = 1) also hold in complex world, but must
be checked.

Geometric picture of z 7→ ez: takes a horizontal strip to the punctured plane.

1.3 Logarithm

Want to define log as the inverse of exp. How can we guess the fomula? Should
satisfy log(wz) = logw + log z.
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To define log z, begin by writing z = reiθ. Then

log reiθ = log r + log eiθ = log r + iθ.

Take this to be the definition. Can check that elog z = z, as desired. (Note that
this doesn’t work for z = 0, since log 0 is undefined).

Major Issue: The angle θ is not actually well-defined, e.g. eiθ = ei(θ+2π).
Can take θ ∈ [0, 2π), but then log is not continuous. This is called a branch of
the logarithm.

1.4 Complex exponents

How to define wz for w, z ∈ C. Since we know how to define ez, we just need to
“change the base”: wz = eq so z logw = q, so

wz := ez logw.

Since logw is multi-valued, so is this. But if z is an integer it is well-defined,
since the different values of logw won’t change the value of ez logw.

1.5 Topology of C
Definition 1.2. Given z0 ∈ C and r > 0, the (open) disc D(z0, r) is the set
{z ∈ C : |z − z0| < r}.

The punctured disc D∗(z0, r) is D(z0, r)− {z0}.

Definition 1.3. A neighborhood N of z0 ∈ C is a subset of C containing D(z0, r)
for some r > 0.

Definition 1.4. A set U ⊂ C is open if ∀z0 ∈ U , U is a neighborhood of z0.

Definition 1.5 (Limits). Given U ⊂ C open, f : U → C, and z0 ∈ C, we write

lim
z→z0

f(z) = w

if ∀ε > 0, ∃δ > 0 such that if z ∈ D∗(z0, δ), then |f(z)− w| < ε.

Definition 1.6 (Continuity). Given U ⊂ C open, and f : U → C, we say f is
continuous if ∀z0 ∈ U ,

lim
z→z0

f(z) = f(z0).

Riemann sphere. As a set, the Riemann sphere Ĉ is just C ∪ {∞}. Its
topology is determined by the following.

Definition 1.7. A set U ⊂ C with ∞ ∈ U is a neighborhood of ∞ if it contains
C−D(z0, R) for some R > 0.

Many arithmetic operations extend to Ĉ:
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• z +∞ =∞ for any z ∈ C

• z · ∞ =∞ for any z ∈ C− {0}

• ∞ ·∞ =∞

• z/∞ = 0 for any z ∈ C.

On the other hand, the following expressions are indeterminate:
∞+∞,∞/∞, 0 · ∞.

2 Complex differentiation

2.1 Definition and basic properties

Definition 2.1. Let U ⊂ C be open, and let f : U → C. We say f is complex
differentiable at z0 ∈ U if

lim
z→z0

f(z)− f(z0)

z − z0

exists, and if it does the value above is the complex derivative at z0 (denoted f ′

or d
dz f).

Means: f locally well-approximated by complex scaling.

Example 2.2. Given a, b ∈ C, the function f : C→ C, f(z) = az+b is complex
differentiable at any z0 ∈ C, and its derivative is equal to a (at any z0).

Proposition 2.3. If f : U → C is differentiable at z0, then f is continuous at
z0.

Proof. We have

lim
z→z0

(f(z)− f(z0)) = lim
z→z0

f(z)− f(z0)

z − z0
· (z − z0)

= lim
z→z0

f(z)− f(z0)

z − z0
· lim
z→z0

(z − z0)

= 0.

�

Definition 2.4. Let U ⊂ C be open, and let f : U → C. We say f is holomor-
phic if it is complex differentiable at all z0 ∈ U .

Proposition 2.5 (Linearity). If a, b ∈ C, f, g : U → C are holomorphic, then
af + bg is holomorphic and

(af + bg)′ = af ′ + bg′.

5



Proposition 2.6 (Product Rule). If f, g : U → C are holomorphic, then so is
fg, and

(fg)′ = f ′g + fg′.

Proof. We have

lim
z→z0

f(z)g(z)− f(z0)g(z0)

z − z0
= lim
z→z0

f(z)g(z)− f(z0)g(z)

z − z0
+ lim
z→z0

f(z0)g(z)− f(z0)g(z0)

z − z0

= lim
z→z0

g(z) lim
z→z0

f(z)− f(z0)

z − z0
+ f(z0) lim

z→z0

g(z)− g(z0)

z − z0

= g(z0)f ′(z0) + f(z0)g′(z0).

�

Proposition 2.7 (Polynomial derivatives). Any polynomial with complex coef-
ficients gives a holomorphic function, and

(anz
n + an−1z

n−1 + · · ·+ a1z + a0)′ = nanz
n−1 + (n− 1)an−1z

n−2 + · · ·+ a1.

Proof. Use linearity, product rule, and derivative of az + b. �

Proposition 2.8 (Chain rule). Let f : U → C, g : V → C be holomorphic
functions, with f(U) ⊂ V . Then g ◦ f : U → C (i.e. the function z 7→ g(f(z)))
is holomorphic and

(g ◦ f)′(z) = g′(f(z)) · f ′(z).

Example 2.9. The function f : C → C, f(z) := Re z is not complex differen-
tiable at 0.

Proof. If z approaches 0 along the real-axis, the difference quotient approaches
1, while along the imaginary axis, it approaches 0. Hence the complex limit of
difference quotients cannot exist. �

Real differentiability.

Definition 2.10. Let f : Rn → Rm be a function. We say that f is real
differentiable at x0 ∈ Rn if there exists a m× n matrix A such that ∀ε > 0, ∃δ
such that

‖(f(x)− f(x0))−A(x− x0)‖ ≤ ε‖x− x0‖

whenever ‖x − x0‖ < δ. In this case, Df |x0
:= A is the derivative of f at x0

(note that it is easy to see that such an A is unique if it exists).
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Derivatives of curves. We can apply the above to a plane curve, i.e. a real
differentiable map γ : R1 → R2. We can write γ(t) = (x(t), y(t))T , and then
the derivative is γ′(t) = (x′(t), y′(t))T . In complex notation, we write this as
x′(t) + iy′(t). Geometrically, this is the tangent vector at γ(t) (provided that
γ′(t) 6= 0).

Proposition 2.11. Let f : U → C be a holomorphic, and γ : R → C real
differentiable, with γ(R) ⊂ U . Then f ◦ γ is real differentiable and

(f ◦ γ)′(t) = f ′(γ(t)) · γ′(t).

2.2 Conformality

Definition 2.12. Given γ1, γ2 : R → C differentiable with γ1(0) = γ2(0) = z0

and γ′1(0), γ′2(0) 6= 0, we define the angle between γ1, γ2 at z0 to be

arg γ′1(0)− arg γ′2(0) mod 2π

Definition 2.13. Let U ⊂ C open, and f : U → C real differentiable. We say
if f is conformal at z0 ∈ U if Df |z0 is non-singular (i.e. det(Df |z0) 6= 0), and
for any pair γ1, γ2 : R→ C with γ1(0) = γ2(0) = z0, γ′1(0), γ′2(0) 6= 0, we have:

angle between γ1, γ2 at z0

=angle between f ◦ γ1, f ◦ γ2 at f(z0).

Proposition 2.14. If f : U → C is complex differentiable at z0 and f ′(z0) 6= 0,
then f is conformal at z0.

Proof. For any γ1, γ2, we have, by the chain rule Proposition 2.11:

angle between f ◦ γ1, f ◦ γ2 at f(z0) = arg(f ◦ γ1)′(0)− arg(f ◦ γ2)′(0)

= arg((f ′(z0)γ′1(0))− arg((f ′(z0)γ′2(0))

= (arg f ′(z0) + arg γ′1(0))− (arg f ′(z0) + arg γ′2(0))

= arg γ′1(0)− arg γ′2(0)

= angle between γ1, γ2 at z0.

�

Example 2.15. Consider the map f(z) = z2. It is holomorphic, and f ′(z) = 2z.
The proposition above says it is conformal, except possibly at 0. One can check
that at 0, angles are doubled, so it is in fact not conformal there.
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2.3 Cauchy-Riemann equations

Theorem 2.16 (Cauchy-Riemann equations). Let U ⊂ C be open, and let
f : U → C. Write f(x+iy) = u(x, y)+iv(x, y). Then f is complex differentiable
at z0 if and only if (i) f is real-differentiable at z0, and (ii) f satisfies the
Cauchy-Riemann equations:

∂u

∂x
=
∂v

∂y
, and

∂u

∂y
= −∂v

∂x
,

where the partials are evaluated at z0. When f is complex differentiable at z0,
we have f ′(z0) = ∂u

∂x + i ∂v∂x .

Proof. Being complex differentiable at z0 means that the function is locally
well-approximated by complex scaling. This is equivalent to being (i) real dif-
ferentiable, and (ii) the 2 × 2 Jacobian derivative matrix at z0 corresponding
to complex scaling. A 2× 2 matrix A corresponds to scaling by some complex
number iff the diagonal entries are equal and the off-diagonal entries are neg-
atives of one another. So in terms of the Jacobian matrix, this corresponds to
the Cauchy-Riemann equations above. �

To check that a function is complex differentiable using the Cauchy-Riemann
equations, we first need to establish that it is real differentiable. For this the
following fact from multivariable real analysis is often useful:

Fact 2.17. Take U ⊂ R open, and f : U → R. If all partials ∂f/∂x1, . . . , ∂f/∂xn
exist and are continuous everywhere on U , then f is real differentiable every-
where on U .

Remark 2.18. The existence of the partials alone is not enough to guaran-
tee real differentiability. One sees this by considering the function defined by
f(x, y) = xy

x2+y2 for (x, y) 6= (0, 0) and f(0, 0) = 0. The function behaves quite
differently on different rays through the origin, and so is not even continuous at
0.

Example 2.19. Take f(z) = z2. We write f(x+ iy) = (x+ iy)2 = (x2 − y2) +
i(2xy), so u(x, y) = x2 − y2 and v(x, y) = 2xy. Then we compute

∂u/∂x = 2x, ∂u/∂y = −2y

∂v/∂x = 2y, ∂v/∂y = 2x.

The partials are continuous everywhere and satisfy the Cauchy-Riemann equa-
tions everywhere, so by Fact 2.17 and Theorem 2.16, f is complex differentiable
everywhere.

Proposition 2.20. The function f : C→ C, f(z) = ez is complex differentiable
everywhere (i.e. it is holomorphic), and f ′(z) = ez.
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Proof. We will apply the Theorem 2.16 (Cauchy-Riemann equations). We com-
pute the partials

∂u/∂x = ex cos y, ∂u/∂y = −ex sin y

∂v/∂x = ex sin y, ∂v/∂y = ex cos y.

These exist, and are continuous, so by Fact 2.17 (applied to each component
function), we get that f is real differentiable, establishing (i) of the Cauchy-
Riemann condition, and (ii) can be seen from the above partials computation.
Hence f is complex differentiable everywhere, and

f ′(z) =
∂u

∂x
+ i

∂v

∂x
= ex cos y + ex sin y = ez.

�

We can then use the above to compute complex derivatives of sin, cos (the
formulas are the same as those found in calculus).

Cauchy-Riemann equations in polar form. Writing z = reiθ and f(z) =
u(r, θ) + iv(r, θ), we can express the Cauchy-Riemann equations in “Polar-
Cartesian” form (polar coordinates are being used for the domain, while carte-
sian is being used for range):

Theorem 2.21. Let U ⊂ C∗ = C − {0} be open and f : C∗ → C be given by
f(z) = u(r, θ) + iv(r, θ). Then f is complex differentiable at z0 if and only if (i)
f is real-differentiable at z0, and

∂u

∂θ
= −r ∂v

∂r
, and

∂v

∂θ
= r

∂u

∂r
,

where the partials are evaluated at z0.
When f is complex differentiable at z0 we have f ′(z0) = 1

iz0

(
∂u
∂θ + i∂v∂θ

)
.

Proof. These can be deduced from the cartesian Cauchy-Riemann equations
using the Chain Rule. In class, we gave a more geometric argument using
infinitesimals. �

2.4 Derivatives of inverse functions

Differentiating the logarithm. Let U = C − {z : Im(z) = 0,Re(z) ≥ 0}
be the plane with non-negative real ray removed. We can define the “standard
branch” of log on this domain by log z = log reiθ = log r+ iθ, where θ is chosen
to lie in (0, 2π).

We will apply Theorem 2.21 to this branch on U . Real differentiability can
be checked by writing r, θ in terms of x, y (note that there is an issue at the
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origin, but 0 /∈ U). And then it easy to compute the partials and check they
satisfy the equations. So this log z is holomorphic and

d

dz
log z =

1

iz

(
∂u

∂θ
+ i

∂v

∂θ

)
=

1

iz
(0 + i · 1) =

1

z
.

Theorem 2.22 (Holomorphic Inverse Function). Let U ⊂ C be open, and
f : U → C holomorphic. Let z0 ∈ U with f ′(z0) 6= 0. Then there exist neighbor-
hoods V of z0 and W of f(z0) such that f(V ) = W , f |V : V →W is a bijection,
and f−1 : W → V is a holomorphic.

Let f be as above. Then by the Chain Rule applied to f(g(w)) = w we get
that g′(w) = 1/f ′(g(w)), i.e.

(f−1)′(w) =
1

f ′(f−1(w))
.

Applying with exp, log (on suitable domains, and with a suitable branch of
log), we get

d

dw
logw =

1

exp(logw)
=

1

w
.

3 Complex Integration

3.1 Definitions and basic properties

Definition 3.1 (Integral of complex function over interval). Let g : [a, b]→ C
continuous. Write g(t) = u(t) + iv(t). Then∫ b

a

g(t)dx :=

∫ b

a

u(t) + i

∫ b

a

v(t).

Definition 3.2 (Contour integral). Let U ⊂ C open, and let f : U → C be
continuous. Let γ : [a, b]→ U be a C1 curve (continuously differentiable). Then
the contour integral of f along γ is defined by∫

γ

fdz :=

∫ b

a

f(γ(t))γ′(t)dt.

Remark 3.3. The definition above naturally extends to piecewise C1 curves.
Our theorems about contour integrals will typically be stated for C1 curves, but
most can be generalized to the case of piecewise C1 curves. We will sometimes
use these more general results in applications.

The contour integral can also be defined as a limit of Riemann sums

lim
∆z→0

∑
i

f(zi)(zi+1 − zi),

where zi are points on the curve, and the maximum distance ∆z between con-
secutive points goes to 0.
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Definition 3.4. The C1 curves γ1 : [a1, b1]→ C, γ2 : [a2, b2]→ C are reparametriza-
tions of one another if there exists a continuously differentiable α : [a1, b1] →
[a2, b2] with α(a1) = a2, α(b1) = b2, α′(t) > 0 for all t, and

γ1 = γ2 ◦ α.

Proposition 3.5 (Independence of reparametrization). If γ1, γ2 as in the pre-
vious definition are reparametrizations of one another, and f : U → C is a
continuous function (whose domain U contains images of γ1, γ2), then∫

γ1

f =

∫
γ2

f.

Proof. Use the Chain Rule, and the change of variables rule for integration. �

The above proposition means that the integral is well-defined on “oriented
geometric curves”; it is not sensitive to the particular parametrization.

Here is the first (and one of the only) contour integrals that we will do “by
hand”.

Example 3.6. Consider the unit circle with counter-clockwise orientation. We
wish to compute the contour integral of f(z) = 1/z along this. We choose the
natural unit speed parametrization γ : [0, 2π] → C, γ(θ) = eiθ, and use the
definition of contour integral:∫

γ

1

z
dz =

∫ 2π

0

1

eiθ
ieiθdθ = 2πi.

Theorem 3.7 (Fundamental theorem of calculus for contour integrals). Let
γ : [0, 1] → C be a C1 curve. Let F : U → C be a holomorphic function, where
U ⊂ C is open and contains the image of γ. Assume that F ′ is continuous.
Then ∫

γ

F ′(z)dz = F (γ(1))− F (γ(0)).

Proof. Write F (γ(t)) = u(t) + iv(t). We have∫
γ

F ′(z)dz =

∫
γ

F ′(γ(t))γ′(t)dt =

∫ 1

0

d

dt
F (γ(t))dt

=

∫ 1

0

(u′(t) + iv′(t)) dt =

∫ 1

0

u′(t)dt+ i

∫ 1

0

v′(t)dt

= (u(1)− u(0)) + i (v(1)− v(0))

= F (γ(1))− F (γ(0)),

where in the second-to-last step, we have used the standard one-variable Fun-
damental Theorem of Calculus separately on u, v. �
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Examples: integrals of polynomials and z−n for n ≥ 2.

Corollary 3.8. If Γ is a closed loop (start and end point are the same), then∫
Γ
F ′(z)dz = 0.

Corollary 3.9. The contour integral of F ′(z) is the same over any two oriented
paths γ1, γ2 going from z to z′.

A converse to the above Corollary also holds:

Theorem 3.10 (Antiderivative from path independence). Let f : U → C
be continuous, with U ⊂ C open. Suppose contour integrals of f are path-
independent, meaning that for any z, z′ ∈ U and any γ1, γ2 paths in U from z
to z′, we have

∫
γ1
fdz =

∫
γ2
fdz. Then f has a global antiderivative on U , i.e

there exists F : U → C holomorphic with

F ′(z) = f(z), ∀z ∈ U.

Proof. Pick a point z0 ∈ U . Define

F (z) :=

∫
γ

f(ζ)dζ,

where γ is some path from z0 to z. By hypothesis, this contour integral is
independent of the particular γ chosen.

Now we check that the derivative at z is f(z). By continuity of f , for any
ε > 0, we can find δ such that if w ∈ D(z, δ), then |f(z)− f(w)| < ε. Choose a
straight segment α from z to w. Then∣∣∣∣f(z)− F (w)− F (z)

w − z

∣∣∣∣ =

∣∣∣∣f(z)(w − z)−
∫
α
f(ζ)dζ

w − z

∣∣∣∣ =

∣∣∣∣
∫
α

(f(z)− f(ζ)) dζ

w − z

∣∣∣∣
≤ ε · length(α)

|w − z|
= ε,

where in the second to last step we have used the Lemma below. This implies
that F ′(z) = f(z).

(If U has multiple connected components, we should deal separately with
each one, choosing a basepoint in each.) �

Lemma 3.11 (Triangle inequality for integrals). If f : U → C is continuous,
then ∣∣∣∣∫

γ

f(z)dz

∣∣∣∣ ≤ length(γ) ·max
z∈γ
|f(z)|.

Proof. Use Riemann sum expression of integral, and triangle inequality. �
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3.2 Line integrals

Recall the definition of a line integral of a real-valued differential form P (x, y)dx+
Q(x, y)dy over a C1 curve γ : [0, 1]→ R2:∫
γ

P (x, y)dx+Q(x, y)dy :=

∫ 1

0

P (x(t), y(t))x′(t)dt+

∫ 1

0

Q(x(t), y(t))y′(t)dt,

where γ(t) = (x(t), y(t)).

Remark 3.12. Like the contour integral, this doesn’t depend on the choice of
parametrization of γ, in the sense of Definition 3.4.

Proposition 3.13 (Interpretation of contour integral as line integrals). Same
setup as in Definition 3.2. Write f(x, y) = u(x, y) + iv(x, y). We have∫

γ

fdz =

∫
γ

(udx− vdy) + i

∫
γ

(vdx+ udy).

To remember the above, write dz = (dx+ idy) and f in terms of u, v, then
expand fdz.

Theorem 3.14 (Green’s Theorem). Let γ be a C1 curve, oriented counter-
clockwise, that is the boundary of an open set U ⊂ R2. Let P,Q : V → R be C1

functions, where V ⊃ (U ∪ γ) is an open set. Then∫
γ

Pdx+Qdy =

∫∫
U

(
∂Q

∂x
− ∂P

∂y

)
dxdy.

Remark 3.15. This is a special case of the very general Stokes’ Theorem for a
differential form ω:

∫
∂U

ω =
∫
U
dω. Here ∂ denotes boundary, and d the exterior

derivative. One can also think of the above as the two-dimensional version of
the Divergence Theorem.

3.3 Cauchy’s theorem and consequences

Theorem 3.16 (Cauchy’s theorem, first version). Let γ be a simple closed C1

curve that is the boundary of an open region U ⊂ C. Let f : V → C be a
holomorphic function, where V ⊃ (U ∪ γ) is an open set. Furthermore, assume
that f ′ is continuous. Then ∫

γ

f(z)dz = 0.

Proof. Using Proposition 3.13, then Green’s Theorem, and then the Cauchy-
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Riemann equations, we have∫
γ

fdz =

∫
γ

(udx− vdy) + i

∫
γ

(vdx+ udy)

=

∫∫
U

(
∂v

∂x
+
∂u

∂y

)
dxdy +

∫∫
U

(
∂u

∂x
− ∂v

∂y

)
dxdy

=

∫∫
U

0dxdy +

∫∫
U

0dxdy = 0.

�

Example 3.17. Taking f(z) = exp(exp z), U to be the disc D(0, 1) (and V to
be, for instance, D(0, 1.1)), we get∫

S1

exp(exp z)dz = 0.

A non-example is given by
∫
s1

1
zdz = 2πi; the reason that Cauchy’s theorem

does not apply is that 1/z is not holomorphic at 0.

Theorem 3.18 (Deformation). Let f : U → C be holomorphic, and let γ be
a simple closed C1 curve contained in U . Suppose that γ can be continuously
deformed within U to γ′, also a simple closed C1 curve in U . Then∫

γ

f =

∫
γ′
f

Proof idea. Assume for simplicity that γ and γ′ together form the boundary of
a region W (the region that the deformation “traces out”). Connect γ to γ′

with a short bridge segment α. We then want to apply Cauchy’s theorem to
the concatenation γ ∪ α ∪ γ̄′ ∪ ᾱ (here γ̄ reverses the orientation of the curve),
since this is the boundary of W . (Our version of Cauchy’s theorem assumed
the boundary was simple, which it is not here; however, by continuity, one
can modify it slightly to be simple while only changing the integral by a small
amount). The contributions of the integrals over α, ᾱ cancel out, and we get
the desired result. �

Theorem 3.19 (Cauchy integral formula, simplest version). Let f be a holo-
morphic function on an open set containing the closed unit disc centered at 0.
Assume that f ′ is continuous. Then

f(0) =
1

2πi

∫
S1

f(z)

z
dz,

(where S1 is oriented counter-clockwise).
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Proof. Fix ε > 0. By continuity of f , we can choose δ such that |f(0)−f(z)| < ε
when |z| < δ. Let S1(δ) be the circle of radius δ centered at 0. Applying our
calculation of

∫
S1 dz/z, the Deformation Theorem, and Lemma 3.11, we get∣∣∣∣f(0)− 1

2πi

∫
S1

f(z)

z
dz

∣∣∣∣ =

∣∣∣∣ 1

2πi

∫
S1

f(0)− f(z)

z
dz

∣∣∣∣
=

∣∣∣∣∣ 1

2πi

∫
S1(δ)

f(0)− f(z)

z
dz

∣∣∣∣∣
≤ 1

2π
lengthS1(δ) · max

z∈S1(δ)

∣∣∣∣f(0)− f(z)

z

∣∣∣∣
=

1

2π
(2πδ)(ε/δ)

= ε.

Since this holds for any ε, we get the desired result. �

Simple modifications of the above proof yield:

Theorem 3.20 (Cauchy’s integral formula, general form). Let γ be a simple
closed C1 curve, oriented counter-clockwise, that is the boundary of an open
region U ⊂ C. Let f : V → C be a holomorphic function, where V ⊃ (U ∪ γ) is
an open set. Furthermore, assume that f ′ is continuous. Then for any z0 ∈ U ,

f(z0) =
1

2πi

∫
γ

f(z)

z − z0
dz.

The existence of such a formula implies that the values of f inside U are
determined completely by the values on the boundary γ.

Theorem 3.21 (Cauchy’s formula for derivatives). Let γ be a simple closed C1

curve, oriented counter-clockwise, that is the boundary of an open region U ⊂ C.
Let f : V → C be a holomorphic function, where V ⊃ (U ∪ γ) is an open set.
Furthermore, assume that f ′ is continuous. Then for any z0 ∈ U ,

f (k)(z0) =
k!

2πi

∫
γ

f(z)

(z − z0)k+1
dz.

In particular, all the higher derivatives exist.

Proof. Start from Cauchy integral formula. Then apply Differentiation under
the integral sign (see Proposition 3.23 below), with

g(z, w) =
f(z)

z − w
,

V a small neighborhood of z0, and U a slight thickening of γ (in particular, U
and V are disjoint). �
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Corollary 3.22 (Infinitely differentiable). Let U ⊂ C open, and f : U → C
holomorphic such that f ′ is continuous. Then f is infinitely complex differen-
tiable.

Below we will consider functions of two complex variables. We will generally
think of this as a family of functions of one complex variable, parametrized
by a complex number. In below, we will consider continuity of functions from
C2 → C. We will also work with complex partial derivatives; here one considers
fixing one variable.

Proposition 3.23 (Differentiation under integral sign). Let γ be a C1 oriented
closed curve in C. Let g : V × U → C be a function, with U, V both bounded,
open subsets of C, and U ⊃ γ. Assume that on the whole domain g(w, z) is
continuous and ∂

∂wg(w, z) exists and is continuous.
Then

∫
γ
g(w, z)dz is a complex differentiable function on V and

d

dw

∫
γ

g(w, z)dz =

∫
γ

∂g(w, z)

∂w
dz.

Proof idea. Show that the difference quotients converge uniformly (using con-
tinuity of the partials, and compactness of γ), which allows one to interchange
limit and integral. �

Removing assumption that f ′ is continuous.

Theorem 3.24 (Goursat). Let R be a closed solid rectangle, and let f be a
holomorphic function on an open set containing R. Then∫

∂R

f(z) = 0.

Remark 3.25. This is less general than Cauchy’s theorem stated previously,
in the sense that the curve has to be very special, the boundary of a rectangle.
Note, however, that unlike in that statement, we are not assuming that f ′ is
continuous.

Proof. Suppose not. By scaling, we can assume that the longest side of R has
length 1, and that

∫
∂R
f(z) = 1. Now divide R into four congruent rectangles,

each similar to the original one. The sum of the integrals over these four rectan-
gles equals

∫
∂R
f(z)dz, since the parts over interior segments cancel out. Thus

we can choose one of these rectangles, call it R1 such that |
∫
∂R1

fdz| ≥ 1/4.
Subdividing further, for any positive integer n we can find a rectangle Rn, the
longer side of which has length 2−n, such that |

∫
∂Rn

fdz| ≥ 4−n.
Now the intersection ∩nRn is a single point z0. Pick any ε > 0. By the

complex differentiability of f at z0, we have that

f(z) = f(z0) + f ′(z0) · (z − z0) + c(z) · (z − z0),
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where |c(z)| ≤ ε, provided that z ∈ Rn and n is sufficiently large (depending
on ε). Then, using that we already know the result for constants and linear
functions (by Corollary 3.8, since they have antiderivatives), and the Triangle
inequality for integrals (Lemma 3.11), we get

4−n ≤
∣∣∣∣∫
∂Rn

(f(z0) + f ′(z0) · (z − z0) + cn(z) · (z − z0)) dz

∣∣∣∣
=

∣∣∣∣∫
∂Rn

cn(z) · (z − z0)dz

∣∣∣∣
≤ length(∂Rn) · max

z∈∂Rn
|cn(z) · (z − z0)|

≤ length(∂Rn) · max
z∈∂Rn

|cn(z)| · max
z∈∂Rn

|z − z0|

≤ (4 · 2−n) · ε · (2 · 2−n).

Rearranging gives ε ≥ 1/8, contradicting that we can choose ε as small as we
wish. �

Theorem 3.26. If U ⊂ C open, and f : U → C is holomorphic, then f ′ is
continuous on U .

Proof. Since continuity is a local property, we can assume that U is a disc. We
first proceed along the lines of proof of Theorem 3.10, defining a function that
we will show is the antiderivative of f . Pick z0 ∈ U . Define

F (z) :=

∫
γ

f(ζ)dζ,

where γ is any path connecting z0 to z that consists of finitely many horizontal
and vertical segments. By repeated application of Goursat’s theorem, this is
well-defined, i.e. doesn’t depend on choice of the horizontal/vertical path. (Here
we are using that U is a disc, hence if it contains the boundary of a rectangle,
it contains the solid rectangle.) We can then proceed as in proof of Theorem
3.10 to show that F ′ = f .

Now we apply Cauchy’s formula for derivatives to F ; the hypothesis is sat-
isfied since F ′ is f , which we know is continuous (since it’s differentiable). So
we get that F ′ is differentiable, and in particular continuous. �

We can now get a version of Cauchy’s theorem without knowing a priori that
f ′ is continuous.

Theorem 3.27 (Cauchy). Let γ be a simple closed C1 curve that is the boundary
of an open region U ⊂ C. Let f : V → C be a holomorphic function, where
V ⊃ (U ∪ γ) is an open set. Then∫

γ

f(z)dz = 0.
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Proof. Apply the previous theorem to get that f ′ is continuous. Then we can
apply Cauchy’s theorem, first version (Theorem 3.16). �

Remark 3.28. We can similarly drop the assumption of continuity of f ′ in the
Cauchy integral formula, and the Cauchy integral formula for derivatives.

3.4 Applications of complex integration theory

Theorem 3.29 (Cauchy bound). If f is holomorphic on an open set that con-
tains D(z0, R) and its boundary, then

|f (k)(z0)| ≤ k! · maxz∈∂D |f(z)|
Rk

.

Proof. Apply Triangle inequality for integrals (Lemma 3.11) to Cauchy’s for-
mula for derivatives (Theorem 3.21). �

Definition 3.30. An entire function is a function f : C→ C that is holomor-
phic.

(The domain is the entire plane).

Theorem 3.31 (Liouville). Any bounded entire function is constant.

Proof. Suppose |f(z0)| ≤ M for all z0 ∈ C. We apply the Cauchy bound with
k = 1. For any z0 ∈ C, we get that

|f ′(z0)| ≤ maxz∈∂D |f(z)|
R

≤ M

R
.

Taking R → ∞, we get that f ′(z0) = 0. Since this holds for all z0, f must be
constant (by e.g. the Fundamental theorem of calculus for contour integrals).

�

Theorem 3.32 (Fundamental theorem of algebra). Consider a complex poly-
nomial p(z) = anz

n + an−1z
n−1 + · · ·+ a0, with an 6= 0 and n ≥ 1. Then p has

a root in C.

Proof. Assume the contrary. Then f(z) := 1/p(z) is an entire function. We
claim that f is bounded. First note

lim
z→∞

p(z)

anzn
= 1,

and this implies that limz→∞ f(z) = 0. Thus we can choose some large closed
ball D such that for z /∈ D we have |f(z)| ≤ 1. Now f is a continuous function,
hence on any compact set, in particular on D, it is bounded in magnitude, say
by M . But then |f(z)| ≤ max{1,M} for all z ∈ C, i.e. f is bounded. Then
Liouville’s theorem implies that f is contant, contradiction. Hence p must have
a root. �
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The following is a converse to Cauchy’s theorem.

Theorem 3.33 (Morera). Let U ⊂ C open and f : U → C continuous. Suppose
for all C1 closed curves γ, we have∫

γ

f(z)dz = 0.

Then f is holomorphic on U .

Proof. The condition implies path-independence of contour integrals of f . So
Theorem 3.10 gives that f has an antiderivative F . Then by Corollary 3.22
applied to F , we get that F ′ = f is itself holomorphic.

�

Remark 3.34. Since being holomorphic is a local property, in the above it
suffices to pick for each point z ∈ U a small disc D(z, r) and prove that the
integral over any curve contained in D(z, r) is zero. And in fact, a similar proof
yields that it is enough to prove that the integral over any rectangle contained
in D(z, r) is zero.

Corollary 3.35 (Riemann’s removable singularity theorem). Let U ⊂ C be
open and p ∈ U . Suppose that f : U − {p} → C is holomorphic, and that f
extends to a continuous function f̃ : U → C. Then f̃ is holomorphic.

Proof. Use the local rectangle version of Morera’s theorem, discussed in Remark
above. If the solid rectangle R does not contain p, then

∫
∂R
f̃ = 0, by Cauchy’s

theorem. If R contains p, by the Deformation theorem,
∫
∂R
f̃ =

∫
∂Rε

f̃ , where

Rε is a solid rectangle containing p with longest side ε. By continuity of f̃
and the Triangle inequality for integrals, this latter integral tends to zero as
ε→ 0. �

Theorem 3.36 (Mean Value Property). Let U ⊂ C open, and f : U → C
holomorphic. Suppose U contains the closure of some disc D(z0, r). Then

1

2π

∫ 2π

0

f(z0 + reiθ)dθ = f(z0).

Proof. We apply Cauchy’s integral formula, using the definition of path integral
with the standard parametrization of the circle:

f(z0) =
1

2πi

∫
∂D(z0,r)

f(z)

z − z0
dz

=
1

2πi

∫ 2π

0

f(z0 + reiθ)

reiθ
(rieiθ)dθ

=
1

2π

∫ 2π

0

f(z0 + reiθ)dθ.

�
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Theorem 3.37 (Maximum Modulus Principle). Let U ⊂ C open and connected,
and f : U → C holomorphic. If for some p ∈ U , |f(p)| = supz∈U |f(z)|, then f
is constant.

Proof. Since U is open, it contains some ball D(p, δ). We first show that f is
constant on D(p, r) for any r < δ. By the Mean Value Property

|f(p)| =
∣∣∣∣ 1

2π

∫ 2π

0

f(p+ reiθ)dθ

∣∣∣∣ ≤ 1

2π

∫ 2π

0

|f(p+ reiθ)|dθ ≤ 1

2π

∫ 2π

0

|f(p)|dθ = |f(p)|.

Thus equality must hold in each of the two inequalities. From the second in-
equality being an equality, we see that |f(p + reiθ)| = |f(p)| for every θ (oth-
erwise, by continuity of f , the left would be less than the right by a definite
amount on a whole arc, but then the averages could not be equal). And in
fact, if the angle of f(p + reiθ) varied, then there would be cancellation in the
average, and the first equality above would fail. So we get that f is constant on
∂D(p, r), and since this holds for all r < δ, we get that |f | is constant on any
such D(p, r).

Now let V = {z ∈ U : f(z) = f(p)}. By the above, we know that V is open.
On the other hand, by continuity of f , we also know V is closed. Since U is
connected, we must have that V = U . �

All material up to here is fair-game for the prelim.

Question: When does a given holomorphic function admit an antiderivative?

Definition 3.38. A subset E ⊂ Rn is said to be simply connected if every loop
γ in E can be continuously contracted to a point (staying within E the whole
time).

Examples: C, D(z0, r), half-planes
Non-examples: D(z0, r)

∗, S1.

Theorem 3.39. If U ⊂ C is open and simply connected, and f : U → C
holomorphic, then for any C1 closed curve γ in C, we have∫

γ

f(z)dz = 0.

Proof. Since the U is simply connected, γ can be continuously contracted to
a point within U . By the Deformation theorem, the contour integral does not
change by this deformation. Since the integral over a point is zero, we are
done. �

Theorem 3.40 (Existence of antiderivative). Let U ⊂ C be simply connected
and open, and f : U → C holomorphic. Then f admits an antiderivative: there
is a holomorphic function F : U → C with F ′ = f .

Proof. By the previous theorem, contour integrals in U are path independent
(to compare integrals along γ and γ′, each from z to w, consider γ ∪ γ̄′ which is
a closed curve, hence the integral over it is zero). Hence by Theorem 3.10, an
antiderivative exists. �
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3.5 Harmonic functions

Question: Does the real (or imaginary) part of a holomorphic function f = u+iv
have any special properties?

Recall that we have the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
, and

∂u

∂y
= −∂v

∂x
.

Taking the partial of the first equation wrt x, and of the second wrt y gives

∂2u

∂x2
=

∂2v

∂x∂y
, and

∂2u

∂y
= − ∂2v

∂y∂x
.

(The existence of these partials is guaranteed by Corollary 3.22). Summing the
two equations and using symmetry of mixed partials (Clairaut’s theorem) gives

∂2u

∂x2
+
∂2u

∂y2
=

∂2v

∂x∂y
− ∂2v

∂y∂x
= 0.

Definition 3.41. A C2 (twice differentiable, with continuous second derivative)
function u : U → R, where U ⊂ R2 is open, is harmonic if

∂2u

∂x2
+
∂2u

∂y2
= 0.

The computation above (and a similar one for imaginary part) yield:

Theorem 3.42. Let U ⊂ C open, and f : U → C holomorphic. Then Re(f)
and Im(f) are holomorphic functions.

A converse holds, with some additional condition on U .

Theorem 3.43. Let U ⊂ C be a simply connected open set, and u : U → R
harmonic. Then there exists a holomorphic function F : U → C with Re(F ) =
u.

Proof. From our result on Cauchy-Riemann equations, Theorem 2.16, we see
that if such an F were to exist, its derivative would equal f := (∂u/∂x) −
i(∂u/∂y). So our guess for F should be the antiderivative of f .

By Fact 2.17, f is real-differentiable (this is why we take u to be C2 in
the definition of harmonic, not just twice differentiable). Then, by a simple
computation using symmetry of mixed partials, and the harmonic condition, we
see that f satisfies the Cauchy-Riemann equations. Hence by Theorem 2.16, f
is holomorphic.

Now Theorem 3.40 on existence of antiderivatives gives us a holomorphic
function F with F ′ = f . Now Re(F ′) = ∂ Re(F )/∂x, while we also have
Re(F ′) = Re(f) = ∂u/∂x. Hence ∂ Re(F )/∂x = ∂u/∂x. A similar computation
yields ∂ Re(F )/∂y = ∂u/∂y. Together, these imply that ReF and u differ by
constant. Translating Re(F ) by this constant gives the desired holomorphic
function. �
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If u, v : U → R are functions such that there is a holomorphic function
F : U → C with Re(F ) = u and Im(F ) = v, we say that u, v are harmonic
conjugates.

Corollary 3.44 (Mean Value Property for harmonic functions). Let U ⊂ R2

be open, and let u : U → R be a harmonic function. Suppose that U contains
the closure of a disc D(z0, r). Then

1

2π

∫ 2π

0

u(z0 + reiθ)dθ = u(z0).

Proof. By the previous result, Theorem 3.43, there is a holomorphic function
F with Re(F ) = u (we apply that result on a slightly larger disc D(z0, r + δ),
which becomes the domain of F ; the existence of such a disc contained in U
follows from compactness of the closure of D(z0, r), and the assumption that U
is open).

We then apply the Mean Value Property (Theorem 3.36) for the holomorphic
function F for the discD(z0, r), and take real parts to give the desired result. �

Proposition 3.45 (Maximum principle). Let U ⊂ C open and connected, and
u : U → C harmonic. If for some p ∈ U , u(p) = supz∈U u(z), then u is constant.

Proof. Argue as in proof of the Maximum Modulus Principle, Theorem 3.37,
using the Mean Value Property for harmonic functions. The harmonic case is a
little easier, since once one doesn’t have to deal with absolute values. �

Dirichlet problem. Suppose that U ⊂ C is a bounded, connected, and open.
Let f : ∂U → R be a continuous function. The Dirichlet problem asks to find a
continuous u : U ∪ ∂U → R such that u|U is harmonic and u|∂U = f .

One physical situation that the Dirichlet problem models is temperature of
a bounded region U at equilibrium. The temperature at the boundary is forced,
according to some function f . The equilibrium temperatures will be given by
the harmonic solution to the Dirichlet problem on U with boundary data f .

Theorem 3.46. If a solution exists to the Dirichlet problem for U, f , then it is
unique.

Proof. Suppose that u, v are both solutions. Consider u−v. Note that u−v|∂U
is identically 0. Apply the Maximum principle to the harmonic function u−v|U .
If u− v|U is constant, then since it’s continuous and its value on ∂U is zero, we
must have that u−v is identically zero, i.e. u = v, and we’re done. Otherwise, we
get that u− v|U does not attain a maximum. On the other hand, Ū is compact
(since U is bounded), hence u− v achieves a maximum on Ū = U ∪ ∂U . Since
a maximum of u− v is not achieved on U , it must be achieved on ∂U , where its
value is 0. This means that u− v ≤ 0 on all of Ū .

On the other hand, we can argue similarly for v− u, getting either that this
is constant and thus identically 0 (so we’re done), or that v− u ≤ 0 on all of Ū .

Together the two inequalities imply u = v.
�
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4 Infinite Series

4.1 Definitions and basic properties

Does a convergent power series give rise to a holomorphic function? Can any
holomorphic function be represented as a power series? The answer to both of
these questions is yes! We will see why, and then study some applications.

Definition 4.1 (Convergence of sequences/series). A sequence z1, z2, . . . ∈ C
is said to converge to z ∈ C if for every ε > 0, there exists an integer N such
that if n ≥ N then

|zn − z| < ε.

A series
∑∞
i=1 zi is said to converge if the partial sums

∑n
i=1 zi form a convergent

sequence.

Proposition 4.2 (Cauchy criterion). A sequence z1, z2, . . . ∈ C converges to
some limit in C if and only if for all ε > 0, there exists N such that if n,m ≥ N
then

|zn − zm| < ε.

(Sequences with this property are called Cauchy sequences.)

The proof of this, which won’t be given here, relies on the completeness of the
complex numbers (which follows easily from completeness of the real numbers).

Definition 4.3. A series
∑∞
i=1 zi is said to converge absolutely if

∑∞
i=1 |zi| is a

convergent series.

Using the Cauchy criterion, one sees that absolute convergence implies con-
vergence (the converse is not true, since one can have cancellation).

The most important tool for deciding convergence of series is comparison
with a geometric series. There are several manifestations of this, e.g. the root
and ratio tests.

Definition 4.4 (Pointwise convergence). Let E ⊂ C. A sequence of functions
fn : E → C, n = 1, 2, . . ., is said to converge pointwise to f : E → C if for all
z ∈ E,

lim
n→∞

fn(z) = f(z).

Example: E = D(0, 1), fn(z) = zn, f(z) = 0.

Definition 4.5 (Uniform convergence). Let E ⊂ C. A sequence of functions
fn : E → C, n = 1, 2, . . ., is said to converge uniformly to f : E → C if for any
ε > 0, there exists an integer N such that if n ≥ N then

|f(z)− fn(z)| < ε

for all z ∈ E.
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The difference between uniform and pointwise convergence is that in point-
wise, the rate of convergence is allowed to depend on the point z, while in
uniform, the same rate must work for all n. The above example that converged
pointwise does not converge uniformly, since as z gets closer to the unit circle,
the convergence takes longer and longer.

Proposition 4.6 (Cauchy criterion for uniform convergence). The sequence
fn converges uniformly iff for all ε > 0, there exists an integer N such that if
n,m ≥ N , then

|fn(z)− fm(z)| < ε.

Proof. Begin by applying Cauchy’s criterion for sequences to find a candidate
limit function f . Then use the hypothesis to show uniform converge of the fn
to this f . �

Theorem 4.7. The limit of a uniformly convergent sequence of continuous
functions is continuous.

The same proof used in real analysis (“Three ε argument”) works.

4.2 Sequences of holomorphic functions

Proposition 4.8 (Integration and uniform convergence). Suppose that γ is a
C1 closed curve. Let fn, f : γ → C be functions such that fn → f uniformly.
Then ∫

γ

f(z)dz = lim
n→∞

∫
γ

fn(z)dz.

Proof. By uniform convergence, given ε > 0, we can choose N > 0 such that
|fn(z)− f(z)| < ε for all n ≥ N and all z ∈ γ. Then by the Triangle inequality
for integrals,∣∣∣∣∫

γ

f(z)−
∫
γ

fn(z)dz

∣∣∣∣ ≤ ∫
γ

|f(z)− fn(z)|dz

≤ length(γ) ·max
z∈γ
|f(z)− fn(z)|

≤ length(γ) · ε,

which goes to zero as ε→ 0. �

Theorem 4.9 (Uniform convergence implies holomorphic). Let U ⊂ C and
fn : U → C be a sequence of holomorphic functions. If fn → f uniformly then
f is also holomorphic.

Remark 4.10. We can replace the condition of uniform convergence with local
uniform convergence: any z has a neighborhood B = D(z, δ) for which fn|B
converge uniformly to f |B .
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Proof. By Cauchy’s theorem, for each n,
∫
γ
fndz = 0 for any closed contour

γ in B. Uniform convergence implies convergence of contour integrals, hence∫
γ
fdz = 0. Then Morera’s theorem gives that f is holomorphic. �

Examples showing unif conv of certain geom series: 1 + z + z2

Proposition 4.11. If fn → f locally uniformly, then f ′n → f ′ locally uniformly.

Proof. Cauchy integral formula for derivatives. �

Proposition 4.12 (Weierstrass M -test). Let E ⊂ C and fn : E → C. Suppose
there exist Mn ≥ 0 such that

• |fn(z)| ≤Mn for all z ∈ E, and

•
∑
nMn is convergent.

Then
∑
n fn converges absolutely and uniformly to some function f : E → C.

Proof. Apply Cauchy criterion for uniform convergence, using the fact that the
tail

∑
n≥kMn tends to zero as k →∞. �

Example:
∑∞
n=1 z

n converges absolutely and uniformly on any ball D(0, δ)
with δ < 1; in the above take Mn = δn. Similar reasoning applies to show∑∞
n=1 nz

n converges on any such disc.

Theorem/Definition 4.13. Given a power series
∑∞
n=1 anz

n, the radius of
convergence is defined as the unique number R ∈ [0,∞] such that

1. If 0 < r < R then the series converges absolutely and uniformly on D(0, r),
and

2. The series diverges at any z with |z| > R.

Proof. Let

R := sup
z

{
|z| :

∞∑
n=1

anz
n converges

}
To prove 1. we suppose r < R. By the definition of r, we can pick w with
|w| > r such that the series converges at w, and in particular the terms anw

n

must be bounded in absolute value by some M . It follows that

|anrn| = |an|(r/|w|)n|w|n ≤M(r/|w|)n.

Applying the Weierstrass M -test with Mn = M(r/|w|)n then gives that
∑
n a

n
n

converges absolutely and uniformly on D(0, r).
Part 2. is immediate from the definition of R. �

Arguments similar to those above yield:
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Theorem 4.14 (Hadamard). The radius of convergence of
∑
n anz

n is given
by

1/ lim sup
n→∞

|an|1/n.

Theorem 4.15. Let f(z) =
∑
n anz

n be a power series with radius of conver-
gence R. Then f defines a holomorphic function on D(0, R). (If R = ∞, one
should replace D(0, R) by C.)

Proof. By Theorem/Definition 4.13, the sum converges uniformly on any D(0, r)
with r < R. Then by Theorem 4.9, we get that f is holomorphic on D(0, r).
Since this is true for any r < R, we see that f is holomorphic on D(0, R). �

The above greatly enriches our supply of holomorphic functions: as long as
an decays fast enough with n, the power series

∑
n anz

n will be holomorphic on
some disc. Most such functions are not of the type we have been studying up
to now (namely polynomials, rational functions, roots, or elementary functions
like exp, sin, cos, log).

4.3 Taylor series

Theorem 4.16. If f : D(0, R)→ C is holomorphic, its Taylor series

∞∑
n=1

f (n)(0)

n!
zn

has radius of convergence at least R.

Proof. Apply the Cauchy bound (Theorem 3.29) and Hadamard’s theorem. �

Note that the above does not say that the Taylor series actually converges
to f ; we still need to prove this.

Cautionary example: The function f : R→ R given by

f(x) =

{
e−1/x if x > 0

0 if x ≤ 0

is infinitely differentiable at the origin, and all derivatives are zero there, so the
Taylor series converges. But it converges to 0, which does not agree with the
function near 0.

Proposition 4.17 (Termwise integration). Suppose that γ is a C1 closed curve.
Let fn, f : γ → C be functions such that

∑∞
n=1 converges uniformly to f . Then

the series can be integrated termwise, i.e.∫
γ

f(z)dz =

∞∑
n=1

∫
γ

fn(z)dz.
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Proof. Follows from Proposition 4.8, and linearity of the integral for finite sums.
�

Theorem 4.18 (Taylor series). If f : D(0, R) → C is holomorphic, its Taylor
series

∞∑
n=1

f (n)(0)

n!
zn

converges to f on D(0, R). The convergence is uniform on D(0, r) for any
r < R.

Example: f(z) = ez is equal to
∑∞
n=0 z

n/n!.

Proof. We begin with the Cauchy integral formula for points z ∈ D(0, r), with
the contour deformed such that its center is at 0:

f(z) =
1

2πi

∫
∂D(0,r)

f(ζ)

ζ − z
dζ.

We then observe that the denominator can be manipulated into a form that
looks like the formula for a geometric series:

f(ζ)

ζ − z
=

f(ζ)

ζ(1− z/ζ)
=
f(ζ)

ζ
· 1 +

f(ζ)

ζ
· (z/ζ) +

f(ζ)

ζ
· (z/ζ)2 + · · · .

If we take z to be some fixed value in D(0, r), then the above is series of
functions of ζ that converges uniformly on ∂D(0, r), by the Weierstrass M -test.

Hence from the expression for f above, and Proposition 4.17 (Termwise
integration), we get

f(z) =
1

2πi

∫
∂D(0,r)

(
f(ζ)

ζ
· 1 +

f(ζ)

ζ
· (z/ζ) +

f(ζ)

ζ
· (z/ζ)2 + · · ·

)
dζ

=
1

2πi

(∫
∂D(0,r)

f(ζ)

ζ
dζ + z

∫
∂D(0,r)

f(ζ)

ζ2
dζ + z2

∫
∂D(0,r)

f(ζ)

ζ3
dζ + · · ·

)

= f(0) + f ′(0)z +
f ′′(0)

2
z2 + · · · ,

where we have used Cauchy’s formula for derivatives for the last step. �

Corollary 4.19. Any holomorphic function is analytic on its domain.

Definition 4.20. Given a holomorphic function f : D(p,R) → C, not identi-
cally zero, the order of vanishing of f at p is the smallest k such that f (k)(p) 6= 0.

The k in the above is always finite, since by Theorem 4.18 (Taylor series), if
all the derivatives are zero, then f is identically zero.

Example: the order of vanishing of z2 + z3 + z4 + · · · at 0 is equal to 2.
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Theorem 4.21 (Isolation of zeros). Let f : D(p,R) → C holomorphic, and
suppose f is not identically zero. If f(p) = 0, then there exists some ball B ⊂ U ,
B 3 p such that f(z) 6= 0 for all z ∈ B − p.

Proof. By Theorem 4.18 (Taylor series), for z ∈ D(p,R), we have

f(p) =

∞∑
n=0

an(z − p)n = (z − p)k
(
ak + ak+1(z − p) + ak+2(z − p)2 + · · ·

)
,

where ak 6= 0 (so k is the order of vanishing). The series ak + ak+1(z − p) +
ak+2(z − p)2 + · · · has the same radius of convergence as

∑∞
n=0 an(z − p)n,

since the ratios of successive terms are the same. Hence this series defines a
holomorphic function g(z) on D(p, r), and we have f(z) = (z − p)kg(z). Note
that g(p) = ak 6= 0, and since g is holomorphic, hence continuous, we have
g(z) 6= 0 on some ball B = D(p, δ). Then f(z) 6= 0 for z ∈ B − p.

�

Analytic continuation. Consider the holomorphic function f : D(0, 1)→ C
given by the convergent power series f(z) = 1 + z + z2 + · · · . The radius of
convergence is 1, so the series does not converge on any circle centered at the
origin of radius bigger than 1. And there is no holomorphic function g defined on
a bigger ball D(0, R) that coincides with f on D(0, 1), since if so we could apply
the theorem on Taylor series to this g to get a convergent series on D(0, R) that
would coincide with the original series. Of course, we know that f(z) = 1

1−z , and
this function is undefined at 1. However this formula for f gives a well defined
holomorphic function on C − {1}, i.e. the original function has an analytic
continuation.

A similar story holds for f(z) = 1− z2 + z4− z6 + · · · . The Taylor series for
f centered at 0 will have radius of convergence 1. Note that f(z) = 1/(1 + z2).
The obstruction to analytically continuing f to a function to D(0, R) for some
R > 1 is the singularities at i,−i. These do not lie on the real line, so the
complex plane provides a satisfactory answer for why the Taylor series does not
converge past the unit circle, not visible from the real perspective.

Theorem 4.22 (Uniqueness of analytic continuation). Suppose U ⊂ C con-
nected, and f, g : U → C holomorphic functions. If f and g are equal on some
open ball B ⊂ U , then f and g are equal on all of U .

Proof. We will show h := f−g is identically zero. Let U ′ = {z : h is zero near z},
which is open. If w is in the closure of U ′, pick some ball B around w contained
in U . Note that any ball centered at w contains infinitely many zeros of h. So
by Isolation of zeros, h is identically zero on some ball centered at w, hence
w ∈ U ′. So U ′ is open and closed, hence U ′ = U , since U is connected. �

4.4 Laurent series

Given a function that has a singularity, can we still expand it in some sort
of series centered at the singularity? For instance, how could we represent
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f(z) = 1/z in terms of a series centered at 0? One answer is to allow negative
powers of z, so the series for f(z) would just be 1/z.

In general, we will consider functions defined on annuli. For concreteness,
we center at 0. For 0 ≤ r < R ≤ ∞, define

Ar,R := {z ∈ C : r < |z| < R}.

The boundaries (when r,R are non-zero and finite) are the two circles S1(r)
and S1(R). As a convention we orient these counter-clockwise.

Theorem 4.23 (Laurent series). Let f : Ar,R → C be a holomorphic function.
Then we can write

f(z) =

∞∑
n=−∞

anz
n,

where the series converges absolutely and uniformly on Ar′,R′ , for any r′, R′ with
r < r′ < R′ < R. Furthermore, the series with these convergence properties is
unique.

Proof. We can express f(z) in terms of the values of f on a small circle centered
at z using the Cauchy integral formula. Deforming the contour as much as
possible, we get, for all z ∈ Ar′,R′

f(z) =
1

2πi

∫
S1(R′)

f(ζ)

ζ − z
dζ +

1

2πi

∫
S1(r′)

f(ζ)

z − ζ
dζ.

Now we proceed as in the proof of Taylor’s series theorem using the geometric
series representations

1

ζ − z
=

1

ζ

(
1 + (z/ζ) + (z/ζ)2 + · · ·

)
,

1

z − ζ
=

1

z

(
1 + (ζ/z) + (ζ/z)2 + · · ·

)
.

For fixed z, the first series converges uniformly for ζ ranging over S1(R′), while
the second converges uniformly for ζ ranging over S1(r′). Thus we can substitute
these formulas in the integral expression for f , and integrate termwise to get

f(z) =
1

2πi

∞∑
n=0

(∫
S1(R′)

f(ζ)

ζn+1
dζ

)
zn +

1

2πi

∞∑
n=0

(∫
S1(r′)

f(ζ)ζndζ

)
z−n−1.

We can deform one of the contours in the last expression above to the same
circle S(r′) (for r < r′ < R) to get a uniform formula that covers Laurent
coefficients for both negative and positive powers:

an =
1

2πi

∫
S1(r′)

f(ζ)

ζn+1
dζ.

For uniqueness, take any other series representation
∑
n bnz

n, multiply by
zm, and integrate termwise; this picks out the b−1−m term, since

∫
S
zkdz = 0

for k 6= −1 and any circle S centered at 0. �
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Example 4.24. Take f(z) = cos z/z on the punctured plane A0,∞ = C∗. We
write the Taylor series for cos z, and divide:

f(z) = (1/z)
(
1− z2/2! + z4/4!− · · ·

)
=

1

z
− z/2! + z3/3!− · · · .

This converges uniformly on Aε,1 for any ε > 0, by the Weierstrass M -test.
Hence by the uniqueness statement in the above theorem, this must be the
Laurent series.

Example 4.25. Take f(z) = e1/z on the punctured disk A0,1 = D(0, 1)∗. We
can substitute 1/z2 into the Taylor series

∑∞
n=0 z

n/n! for ez to get

f(z) =

∞∑
n=0

z−n/n!

which converges uniformly on Aε,1 for any ε > 0, by the Weierstrass M -test.
Hence by the uniqueness statement in the above theorem, this must be the
Laurent series.

4.5 Singularities

Suppose U ⊂ C open, p ∈ U , and f : U − {p} → C holomorphic. We can find a
small disk in U centered at p, and apply the Laurent expansion to understand
how f is behaving at p. For concreteness, we will work with the disk D(0, 1).

Theorem/Definition 4.26 (Classification of isolated singularities). Let f :
D(0, 1)∗ → C holomorphic, and consider its Laurent series

f(z) =

∞∑
n=−∞

anz
n.

Let N = inf{n : an 6= 0} (if all an are zero, take N =∞; note also that we can
have N = −∞). Then

1. If N ≥ 0, then the series can be extended over 0 to a holomorphic function;
in this case 0 is called a removable singularity

(a) if N =∞, f is identically zero

(b) if ∞ > N > 0 then f is said to have a zero of order N at 0

(c) if N = 0, f(0) 6= 0.

2. If N < 0, then f does not extend to a holomorphic function on D(0, 1)
(since then it would have a Taylor series); the point 0 is a non-removable
singularity.

(a) if −∞ < N < 0 then f is said to have a pole at 0 of order −N .
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(b) if N = −∞, then f is said to have a essential singularity at 0.

Definition 4.27. If U ⊂ C open and f : U → C ∪ {∞} is a function that is
holomorphic away from a set of isolated singularities which are all poles, then
we say that f is a meromorphic function on U .

Theorem 4.28 (Riemann’s removable singularity theorem, strengthened). Let
f : D(0, 1)∗ → C holomorphic and bounded. Then f has a removable singularity
at 0.

Proof. Pick δ > 0 and define g : D(0, δ)→ C by

g(z) =

∫
∂D(0,δ)

f(ζ)

ζ − z
dζ

Note that g is holomorphic, by Differentiation under the integral sign. We claim
that g agrees with f on D(0, δ)∗. For fixed z ∈ D(0, δ)∗, and any small δ′ > 0
we have by Cauchy’s integral formula (and Deformation theorem) that

f(z) =

∫
∂D(0,δ)

f(ζ)

ζ − z
dζ −

∫
∂D(0,δ′)

f(ζ)

ζ − z
dζ.

Since f is assumed bounded on D(0, δ), and by the triangle inequality for in-
tegrals, the integral on the right goes to 0 as δ′ → 0. Thus g and f agree on
D(0, δ)∗, and so g can be used to extend f holomorphically over 0. �

Theorem 4.29 (Casorati-Weierstrass). Let f : D(0, 1)∗ → C be a holomorphic
function with an essential singularity at 0. Then f(D(0, 1)∗) is a dense subset
of C.

Proof. Suppose for the sake of contradiction that there is some p ∈ C with
p /∈ f(D(0, 1)∗). Then there is some ball D(p, δ) ⊂ C that is disjoint from
f(D(0, 1)∗). Now consider the holomorphic function g : B(0, 1)∗ → C,

g(z) :=
1

f(z)− p
.

Since |f(z)−p| ≥ δ for all z, we see that g is bounded. By Riemann’s removable
singularity theorem (Theorem 4.28), we get that g extends to a holomorphic
function on D(0, 1).

Now using the Taylor series for f centered at 0, we can write g(z) = zkh(z),
where h is holomorphic and h(0) 6= 0. Near 0, we then get that

f(z)− p =
1

g(z)
= z−k

1

h(z)
,

so at z = 0, f has a pole of order k (or is holomorphic). But we assumed it had
an essential singularity here, contradiction. �

Example: e1/z (think about ez near infinity)
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5 Residue theorem and applications

5.1 Residues and the residue theorem

Definition 5.1 (Residue). Let U ⊂ C open, and suppose f : U → C has an
isolated singularity at p ∈ U . The residue of f at p, denoted Res(f ; p), is defined
to be the a−1 term of the Laurent series for f on small punctured disk centered
at p.

From our proof of the Laurent series theorem, we see that

Res(f ; p) =
1

2πi

∫
γ

f(z)dz,

where γ is a small loop centered at p that does not enclose any other singularities
of f .

Theorem 5.2 (Residue Theorem). Let U ⊂ C open, P ⊂ U a finite set, and
f : U − P → C holomorphic. Suppose that γ ⊂ U − P is a C1 closed curve that
bounds a region V ⊂ U . Then∫

γ

f(z)dz = 2πi
∑

p∈P∩V
Res(f ; p).

Proof. Let p1, . . . , pn be the points in P ∩ V . Let Bi ⊂ U be a small disc
centered at pi that does not contain any of the other pj . Orient all boundaries
counter-clockwise. Cauchy’s theorem and the integral expression for residues
give ∫

γ

f(z)dz =
∑
i

∫
∂Bi

f(z)dz = 2πi
∑
i

Res(f ; pi).

�

Example 5.3. Compute ∫
S1(2)

1

1 + z2
dz.

We need to find the residues of f(z) = 1/(1 + z2) at i and −i. To compute the
residue at i, write

f(z) =
1

(z − i)(z + i)
=

1

z − i
(
a0 + a1(z − i) + a2(z − i)2 + · · ·

)
= a0(z − i)−1 + a1 + a2(z − i) + · · · .

Here a0, a1, . . . are the Taylor coefficients for 1/(z + i) centered at i (note that
1/(z + i) is holomorphic near i). In particular, a0 = 1/(i + i) = −i/2. So
Res(f ; i) = −i/2. A similar computation yields Res(f ;−i) = i/2. Then the
Residue Theorem gives∫

S1(2)

1

1 + z2
dz = 2πi (Res(f ; i) + Res(f ;−i)) = 2πi(−i/2 + i/2) = 0.
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Example 5.4. Compute ∫
S1(0.1)

1

sin z
dz.

We first compute the residue at 0 by noting that

1

sin z
=

1

z − z3/3! + z5/5!− · · ·
=

(
1

z

)(
1

1− z2/3! + z4/5!− · · ·

)
.

The factor on the right is a holomorphic function whose value at 0 is 1, so
Res(1/ sin(z); 0) = 1. Then the Residue Theorem gives∫

S1(0.1)

1

sin z
dz = 2πi · Res(1/ sin(z); 0) = 2πi.

5.2 Definite integrals using residue theory

We can evaluate certain purely real definite integrals using by computing a
related contour integral.

Example 5.5. Compute ∫ ∞
−∞

1

1 + x2
dx.

We take a contour consisting of the interval IR = [−R,−R] together with a half-
circle γR in the upper-half plane connecting R,−R. By the Residue Theorem∫

IR∪γR

1

1 + z2
dz = 2πi · Res(1/(1 + z2), i) = 2πi(−i/2) = π.

As R → ∞, the integral over γR approaches 0 (using Triangle inequality for
integrals). Hence ∫ ∞

−∞

1

1 + x2
dx = lim

R→∞

∫
IR

1

1 + z2
dz = π.

Example 5.6. Compute ∫ ∞
−∞

1

1 + x4
dx.

We use the same contour as in the previous example; this time it contains two
poles, at ζ, ζ3, where ζ is a primitive 8th root of unity. Take f(z) = 1/(1 + z4)
and g(z) = 1+z4. Since g has a simple zero at ζ, Res(f ; ζ) = 1/g′(ζ) = 1/(4ζ3).
Similarly, we get Res(f ; ζ3) = 1/(4ζ). Arguing as above we get that∫ ∞

−∞

1

1 + x4
dx = lim

R→∞

∫
IR

1

1 + z4
dz = 2πi

(
Res(f ; ζ) + Res(f ; ζ3)

)
=

π√
2
.

The technique used above works well for integrals of rational function
∫∞
−∞(P (x)/Q(x))dx,

where degQ ≥ degP +2, and Q is a polynomial we can factor (and whose roots
don’t lie on real axis).
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Example 5.7. Compute

I =

∫ 2π

0

dθ

1 + a2 − 2a cos θ
,

where 0 < a < 1. Make the change of variable z = eiθ, so dz = ieiθdθ. Note
cos θ = (z + 1/z)/2. So we get

I =

∫
γ

idz

a(z − a)(z − 1/a)
.

This has simple poles at z = a, 1/z, with residues i/(a2−1) and i/(1−a2); only
the a lies in the unit disc. Thus by the Residue Theorem,

I = 2πi · Res

(
i

a(z − a)(z − 1/a)
; a

)
= 2πi · i/(a2 − 1) = 2π/(1− a2).

Example 5.8. Compute ∫ ∞
0

√
x

1 + x2
dx.

Take a closed “Pacman” contour γ consisting of:

• γ1 a segment of length R starting near origin at angle ε to positive x-axis,

• γ3 a length R ray ending near the origin at angle −ε to postitive x-axis,

• γ2 a large circular arc of circle centered at 0 connecting the end of γ1 to
end of start of γ3,

• γ4 a small circular arc of radius ε centered at origin, connecting the start
of γ1 to end of γ2.

Take the standard (“positive”) branch of f(z) = z1/2/(1 + z2) on the region
U bounded by γ. Going around the circle takes us to the other (“negative”)
branch, so∫ R

0

√
x

1 + x2
dx = lim

ε→0

∫
γ1

f(z)dz = lim
ε→0

∫
−γ3
−f(z)dz = lim

ε→0

∫
γ3

f(z)dz.

For large R, f has poles at ±i in U . If g, h are holomorphic with g(p) 6= 0
and h has a simple zero at p, then Res(g/h; p) = g(p)/h′(p). Hence

Res(f ; i) =
i1/2

2(i)
=

1

2i
· 1 + i√

2
,

where we have been careful to use the correct branch to compute i1/2. Similarly,
Res(f ; i) = 1

−2i ·
−1+i√

2
.

Now applying the Residue Theorem gives∫
γ

f(z)dz = 2πi (Res(f ; i) + Res(f ;−i)) = 2π/
√

2.
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Taking limits and expressing the integral in terms of its four parts gives

2π/
√

2 = lim
R→∞

lim
ε→0

(∫
γ1

f(z)dz +

∫
γ2

f(z)dz +

∫
γ3

f(z)dz +

∫
γ4

f(z)dz

)
= 2 lim

R→∞

∫ R

0

√
x

1 + x2
dx+ lim

R→∞
lim
ε→0

(∫
γ2

f(z)dz +

∫
γ4

f(z)dz

)
Estimating the γ2, γ4 contributions using triangle inequality for integrals give
that those terms go to zero. So we get∫ ∞

0

√
x

1 + x2
dx = π/

√
2.

5.3 The argument principle

(See Marsden-Hoffman Section 6.2)

Given a holomorphic function f vanishing at p, we denote by Mult(f ; p) the
order of the zero at p, assuming f is not identically zero in any neighborhood
of p. If f does not vanish at p, we set Mult(f ; p) = 0. (Recall the order was
defined in Theorem/Definition 4.26.)

Theorem 5.9. Let U ⊂ C open, and f : U → C holomorphic. Suppose that
γ ⊂ U is a C1 closed curve that bounds a region V ⊂ U . Suppose that f is
non-zero everywhere on γ. Then

1

2πi

∫
γ

f ′(z)

f(z)
dz =

∑
p∈V

Mult(f ; p).

Proof. First note that Res(f ′/f ; p) = Mult(f ; p); this is proved by writing
f(z) = (z−p)kg(z), where g is holomorphic and non-zero near p. Then the result
follows directly from the Residue Theorem applied to the function f ′/f . �

Interpretation: Note that f ′/f = d
dz log f . Thus one can think of the integral

above as
∫
γ
d log f . On domains encircling 0, log is not a well-defined function;

however its derivative is, and one can think of the integral as measuring the
difference in values for different branches of log. We know that as we go around
a circle centered at 0, log increases by 2πi. Thus the integral measures the
number of times f(γ) winds around the origin. This is related to the number of
zeros that f has in the region bounded by γ.

Definition 5.10 (Open map). Let U ⊂ C open. A function f : U → C is open
if for any open set V ⊂ U , f(V ) is also open.

In other words, by perturbing the input a small amount, the output can be
perturbed by a small amount in any direction.

Example: f(z) = z2

Non-examples: f(z) = |z|, f(z) = 0.
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Theorem 5.11 (Open Mapping). Let U ⊂ C open. If f : U → C is holomorphic
and not locally constant, then it is open.

Proof. It suffices to show that for any small disc D(p, r) ⊂ U , the image f(D)
is open. The idea is to apply the argument principle to the function f(z) − w
for various w near f(p). By isolation of zeros, making r smaller we can assume
that the only zero of f(z)− f(p) on D(p, r) is at z = p. The argument principle
then gives

1

2πi

∫
∂D(p,r)

(f(z)− f(p))′

f(z)− f(p)
dz =

∑
p′∈D(p,r)

Mult(f(z)− w; p′)

= Mult(f(z)− f(p); p) = k,

for some integer k > 0. Now for any w, another application of argument principle
gives

1

2πi

∫
∂D(p,r)

(f(z)− w)′

f(z)− w
dz =

∑
p′∈D(p,r)

Mult(f(z)− w; p′).

Now this expression various continuously in w for w near f(p). On the other
hand, the right-hand side is always an integer! This means that the expression
is locally constant as a function of w. Since it’s value is k at w = f(p), it must
also equal k for all w near f(p). That means that one of the terms in the sum
of multiplicities is positive, i.e. f(z) = w for some z.

�

The open mapping theorem can be used to give a different simple proof of
the maximum modulus principle.

5.4 Local Mapping

Theorem 5.12 (Local mapping). Let U ⊂ C open, f : U → C holomorphic,
and p ∈ U . There is some disc D(p, r), a non-negative integer k, and an
injective holomorphic function g : D(p, r) → C such that f(z) = a + g(z)k for
all z ∈ D(p, r), g(p) = 0, and g′(p) 6= 0.

Proof. On any small disc about p we can write a Taylor series for f :

f(z) = a0 + a1(z − p) + a2(z − p)2 + · · ·
= a0 + (z − p)k (ak + ak−1(z − p) + · · · ) ,

where ak 6= 0. On a possibly smaller disc, ak+ak−1(z−p)+ · · · is nowhere zero,
so it admits a holomorphic kth root function. So f(z) = a0 +((z−p)h(z))k. We
take g(z) = (z−p)h(z), and note that g′(p) = h(p) 6= 0, so g is locally invertible
by the inverse function theorem.

�
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Corollary 5.13. A holomorphic function f : U → C is locally injective at
z ∈ U iff f ′(z) 6= 0.

Recalling the definition of conformal, the above means that conformal is
equivalent to holomorphic and locally injective.

6 Automorphisms and conformal mapping

(See Marsden-Hoffman Ch. 5.2 and Ch. 5.3)

6.1 Automorphisms and Mobius transformations

An automorphism of U is a holomorphic map f : U → U that is a bijection.
Note that the inverse of a holomorphic bijection is holomorphic, by Corollary
5.13 and the inverse function theorem. (In particular the inverse is continuous.
Compare to the setting of continuous functions – one can have a continuous
bijection whose inverse is not continuous, for instance the natural map from
[0, 1) to S1).

Theorem 6.1 (Automorphisms of C). The automorphisms of C are exactly the
maps of the form z 7→ az + b, for some a, b ∈ C, a 6= 0.

Proof. Let f be such an automorphism. Consider g : C∗ → C, g(z) = 1/f(1/z).
The preimage f−1(B(0, 1)) is compact (since f is a homeomorphism it preserves
compact sets), hence bounded. It follows that |g(z)| ≤ 1 for z inside some
small ball. Thus by the Riemann removable singularity theorem, g extends to
a holomorphic function on C. Thus, locally near 0, we can write g(z) = zkh(z),
where h is holomorphic and h(z) 6= 0. It follows that |h(z)| ≥ ε near z = 0 for
some ε > 0. Hence |g(z)| ≥ ε|z|k. Translating this back into information about
f gives

|1/f(1/z)| ≥ ε|z|k

|f(1/z)| ≤ (1/ε)
1

|z|k
.

Hence taking w = 1/z we get that |f(w)| ≤ (1/ε)|w|k for all w outside a large
ball. Applying this with the Cauchy bound (in a very similar way to HW 8,
Problem 4) gives that f is a polynomial. But polynomials of degree larger than
1 are non-injective, hence f must have degree 1. �

Can we interpret f(z) = 1/z as the automorphism of something? Note

that this f : C∗ → C∗ extends to a continuous function Ĉ → Ĉ by setting
f(∞) = 0 and f(0) =∞. And in fact it is “holomorphic” even at 0 and ∞, in
an appropriate sense (to define this, one looks at f(1/z) for z large and 1/f(z)
for z close to 0).
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Definition 6.2. A Mobius transformation (aka fractional linear transforma-

tion) is a function f : Ĉ→ Ĉ of the form

f(z) =
az + b

cz + d
.

where a, b, c, d ∈ C with ad− bc 6= 0.

Theorem 6.3. The Mobius transformations form a group under composition.
That is, the composition of two Mobius transformations is a Mobius transfor-
mation, and every Mobius transformation has an inverse.

Proof. We set

A =

(
a b
c d

)
and define a map p : C2 → Ĉ given by (z, w) 7→ z/w and note that

f(z) = p
(
A(z 1)T

)
.

Note that since we are applying p at the end, we can get the same answer by
replacing (z 1) with (zw w) for any w ∈ C∗. Take another Mobius transfor-
mation g, which corresponds to some matrix B. Then

g ◦ f = p

(
B
(
p
(
A
(
z 1

)T)
1
)T)

= p
(
B
(
A(z 1)T

))
.

This is the Mobius transformation corresponding to the product matrix BA.
We can then easily see that the inverse of f is the Mobius transformation

corresponding to A−1 (we are assuming ad − bc 6= 0, so the inverse matrix
exists). �

Corollary 6.4. A Mobius transformation gives a bijection Ĉ → Ĉ. It is holo-
morphic in the appropriate sense, hence an automorphism.

The intuition for the following is that Mobius transformations have three
complex degrees of freedom (there are 4 complex parameters a, b, c, d, but rescal-
ing them all by the same complex number leads to the same Mobius transfor-
mation).

Theorem 6.5 (Triple transitivity). Given points z1, z2, z3, w1, w2, w3 ∈ Ĉ with
zi 6= zj for i 6= j and wi 6= wj for i 6= j, there exists a unique Mobius transfor-
mation f with f(zi) = wi for i = 1, 2, 3.

Proof. First we show that we can find a Mobius transformation g with g(z1) = 0,
g(z2) = 1, g(z3) =∞. One easily checks that

g(z) =
(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
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does the job.
Similarly, we can find h with h(w1) = 0, h(w2) = 1, h(w3) = ∞. Then

f = h−1 ◦ g has the desired property.
�

Theorem 6.6. Any automorphism f of Ĉ is a Mobius transformation.

Proof. By Triple transitivity, we can compose f with a Mobius transformation
g such that g ◦ f(∞) = ∞. So g ◦ f is an automorphism of C, hence affine, by
Theorem 6.1. In particular g ◦ f is Mobius, and composing with g−1 gives that
f is as well. �

Theorem 6.7 (Circles/lines). If S ⊂ Ĉ is a circle or line, and f is Mobius,
then f(S) is also a circle or a line.

Note that f might take a circle to a line.

Proof. Any Mobius transformation is a composition of a sequence of Mobius
transformations that are either affine or z 7→ 1/z. Affine maps clearly preserve
circles/lines. One can check explicitly that z 7→ 1/z also does, using the equation
for circles and lines in (x, y) coordinates.

There is a also a more synthetic way to show that z 7→ 1/z preserves cir-
cles/lines. First observe that is suffices to show this property for I(z) = 1/z̄. In
polar coordinates, this map is particularly simple: it sends r(eiθ) 7→ (1/r)eiθ,
and is an example of an inversion. Now one notices that for any a, b ∈ D(0, 1),
the two triangles a0b and I(b)0I(a) are similar. If follows that I takes any circle
passing through 0 and lying in the disc to a line. Judicious use of this similarity
principle yields the result for all circles/lines. �

6.2 Conformal mapping

Definition 6.8. Domains U, V ⊂ C (or in Ĉ) are said to conformally isomorphic
(or biholomorphic) if there exists a holomorphic bijection U → V .

Theorem 6.9. The upper-half plane H := {z : Im(z) > 0} and the disc D(0, 1)
are conformally isomorphic.

Proof. We claim that the Mobius transformation f(z) = z−i
z+i restricts to a holo-

morphic bijection H→ D(0, 1). In fact, the map takes (−1, 0, 1) to (i,−1,−i).
By the circles/lines property, the real line must get mapped to unit circle. Let
g be inverse of f ; note that g takes the unit circle to R. We will be done
if we can show g(D(0, 1)) = H. By connectedness of D(0, 1), to check that
g(D(0, 1)) ⊂ H, it now suffices to check that some point in H maps into D(0, 1);
for instance note that g(0) = i.

All that remains is to show that g(D(0, 1)) ⊃ H. Since H is connected, it
suffices to show that g(D(0, 1)) is both open and closed as subset of H. Openness
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is immediate, since g(D(0, 1)) is open in Ĉ. Note that g(D(0, 1)) is closed in Ĉ,
since D(0, 1) is. Using this and the fact that g(S1) = R, we get that

g(D(0, 1)) = g(D(0, 1)) ∩H,

is closed in H, and we’re done.
�

One can also check that the restriction of the map f in the proof above to
the open first quadrant has image the lower half semi-disk.

Other confromal isomorphisms.

Theorem 6.10. The open first quadrant Q := {z : Re(z), Im(z) > 0} and the
upper-half plane H are conformally isomorphic via the map z 7→ z2.

Proof. The inverse is given by (the standard branch of)
√
z; note that this is

well-defined on H. �

All material up to here is fair-game for the final (any further changes to the
document will only be minor corrections/clarifications).

Theorem 6.11. The automorphisms of H are exactly the Mobius transforma-
tions of the form

f(z) =
az + b

cz + d
,

where a, b, c, d ∈ R, and ad− bc = 1.

Examples: z 7→ 2z, z 7→ z + 1.
These are of central importance in (plane) hyperbolic geometry.

Theorem 6.12. The disc D(0, 1) and the complex plane C are not conformally
isomorphic.

Proof. Suppose f : C → D(0, 1) were a conformal bijection. By Liouville’s
theorem, f is constant. But then it cannot be a bijection, since D(0, 1) has
more than point, contradiction. �

Theorem 6.13 (Riemann mapping theorem). Let U ⊂ C be open, connected,
and simply connected, with U 6= C. Then U is conformally isomorphic to
D(0, 1).

There are examples where the boundary is very bad. In the case of polygons,
there is a somewhat explicit formula for the map, called the Schwarz-Christoffel
formula.
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6.3 Applications (not on exams)

Dirichlet problem. The Dirichlet problem for the disc can be solved using
several different methods. Recall that we specify a continuous function f : S1 →
R and want to extend it to a function u on the closed disc that is harmonic on
the open disc.

• One approach starts with the observation that the functions zn and z̄m

on S1, for n,m non-negative integers, extend naturally to functions on the
disc, whose real and imaginary parts are each harmonic. Any continuous
function f : S1 → C can be written as an (infinite) linear combination of
these functions (this is not obvious: the key idea is that one can approxi-
mate a “δ function” with a sharp peak at 0 by trigonometric polynomials,
and then integrate this against f). Then since finite linear combinations
of zn, z̄m can be extended, a limiting argument gives that any f can also
be extended harmonically.

One can adapt the existence argument above to get an actual formula for
the extension u. In fact, the coefficients in the expression for f in terms
of zn, z̄m are closely related to Laurent coefficients (since z̄ = 1/z on the
unit circle). Using the formula for Laurent coefficients, one gets a formula
for u:

u(z) =
1

2π

∫ 2π

0

K(z, eiθ)f(eiθ)dθ,

where K(z, eiθ) := 1−|z|2
|z−eiθ|2 is the Poisson kernel.

• Another approach is via random walks (Brownian motion). The formula
is

u(z) = E[f(pT (z))],

where pt(z) is a random (Brownian motion) path starting at z, T is the
time when it first hits the unit circle, and E[·] denotes the expected value
over all paths. This u satisfies the mean value property, hence is harmonic,
and it agrees with f on S1.

Dirichlet problem in other domains. One can use the above solve the
Dirichlet problem for any simply connected domain bounded by a simple closed
curve. First conformally map to the disc via a map g, solve the problem there,
and then transfer back (use that u◦ g is harmonic if u harmonic and g holomor-
phic).

Fluid flow. Fluid flow (incompressible, irrotational) around obstacle. Solve
the problem first on H (flow lines are parallel to boundary), then transport
conformally to other domains.
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