Fall 2025 HW MATH 4530

Homework 1: MATH 4530

Collaboration Policy: You may, in fact are encouraged to, work on the problems with other students. You must write up your solutions by yourself.

Submission: Upload a .pdf file using the page for this assignment in Blackboard. You may produce this either (i) electronically, or (ii) by hand, legibly, and then scanned, legibly.

- 1. Determine whether each of the following statements is true for all sets A, B, C, D:
 - (a) A (A B) = B
 - (b) A (B A) = A B
 - (c) $A \cap (B C) = (A \cap B) (A \cap C)$
 - (d) $A \subset C$ and $B \subset D \Rightarrow A \times B \subset C \times D$.
- 2. Let $f: A \to B$ and let $A_i \subset A$ and $B_i \subset B$ for i = 0, 1. Show that f^{-1} preserves inclusions, unions, intersections, and differences:
 - (a) $B_0 \subset B_1 \Rightarrow f^{-1}(B_0) \subset f^{-1}(B_1)$.
 - (b) $f^{-1}(B_0 \cup B_1) = f^{-1}(B_0) \cup f^{-1}(B_1)$.
 - (c) $f^{-1}(B_0 \cap B_1) = f^{-1}(B_0) \cap f^{-1}(B_1)$.
 - (d) $f^{-1}(B_0 B_1) = f^{-1}(B_0) f^{-1}(B_1)$.

Show that f preserves inclusions and unions only:

- (e) $A_0 \subset A_1 \Rightarrow f(A_0) \subset f(A_1)$.
- (f) $f(A_0 \cup A_1) = f(A_0) \cup f(A_1)$.
- (g) $f(A_0 \cap A_1) \subset f(A_0) \cap f(A_1)$; and show \subset cannot be replaced by = in general.
- (h) $f(A_0 A_1) \supset f(A_0) f(A_1)$; and show \supset cannot be replaced by = in general.
- 3. (a) A real number x is said to be algebraic (over the rationals) if it satisfies some polynomial equation of positive degree

$$x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0} = 0$$

with rational coefficients a_i . Show that the set of algebraic numbers is countable.

- (b) A real number is said to be transcendental if it is not algebraic. Assuming the reals are uncountable, show that the transcendental numbers are uncountable. (It is a somewhat surprising fact that only a few transcendental numbers, for instance e and π , are familiar to us. Even proving these two numbers transcendental is highly nontrivial.)
- 4. Let \mathcal{A} be some collection of disjoint open intervals in \mathbb{R} . Is \mathcal{A} countable?