Fall 2025 HW MATH 4530

Homework 4: MATH 4530

Collaboration Policy: You may, in fact are encouraged to, work on the problems with other students. You must write up your solutions by yourself.

Submission: Upload a .pdf file using the page for this assignment in Blackboard. You may produce this either (i) electronically, or (ii) by hand, legibly, and then scanned, legibly.

1. Let \mathcal{T} be the collection of all subsets of \mathbb{R}^n of the form

$$\mathbb{R}^n - \bigcap_{f \in P} \{x : f(x) = 0\},\$$

where P is some collection of polynomials in n variables. Show that \mathcal{T} defines a topology. (This is known as the Zariski Topology; it is of central importance in algebraic geometry.) Show that for each $n \geq 1$, it is not Hausdorff. Is it finer, coarser, or incomparable to the standard topology on \mathbb{R}^n ?

2. Suppose X_{α} are sets, for $\alpha \in I$, where I is some index set. Recall the disjoint union

$$D = \coprod_{\alpha \in I} X_{\alpha} := \bigcup_{\alpha \in I} \{(x, \alpha) : x \in X_{\alpha}\}.$$

For each α , there is a canonical injection $X_{\alpha} \to D$ given by $x \mapsto (x, \alpha)$.

Now suppose each X_{α} is equipped with a topology. We equip D with the finest topology so that all the canonical injections are continuous. Give a simple characterization of openness of a subset of D in this topology.

3. Let S^1 be the circle with the standard topology. Consider the disjoint union space

$$E := \left(\coprod_{i \in \mathbb{Z}} S^1 \right) \sqcup \left(\coprod_{j \in \mathbb{Z}} [0, 1) \right).$$

Show that there exists a continuous bijection $E \to E$ which is not a homeomorphism.

- 4. Find a function $f: \mathbb{R} \to \mathbb{R}$ that is continuous at precisely one point.
- 5. Let $F: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be given by

$$F(x,y) = \begin{cases} xy/(x^2 + y^2) & \text{if } (x,y) \neq (0,0) \\ 0 & \text{otherwise.} \end{cases}$$

Show that F is continuous in each variable separately, but that F is not continuous.

Fall 2025 HW MATH 4530

6. Let S be the subset of $\mathbb{R}^{\mathbb{Z}_+}$ consisting of those sequences that are eventually zero, i.e. all sequences (x_1, x_2, \ldots) such that $x_i \neq 0$ for only finitely many values of i. What is the closure of S in $\mathbb{R}^{\mathbb{Z}_+}$ in the box and product topologies?