Homework 2: MATH 6210

Collaboration Policy : You may, in fact are encouraged to, work on the problems with other students. You must write up your solutions by yourself.

Note: For problems 1 and 2, use the following definition (which we will discuss in class on Monday). A set $E \subset \mathbb{R}$ is measurable if for all $\epsilon > 0$, there exists an open set $U \subset \mathbb{R}$ with $E \subset U$ and $\mu^*(U - E) < \epsilon$.

- 1. Prove that a countable intersection of measurable sets is measurable.
- 2. Prove that each of the following sets is measurable, and compute its measure:
 - (a) The (standard middle-thirds) Cantor set \mathcal{C} .
 - (b) The set $[0,1] \mathbb{Q}$ of irrational numbers in the unit interval.
- 3. Let E_1, E_2, \ldots be subsets of \mathbb{R} and $\delta > 0$ such that $d(E_i, E_j) > \delta$ for all i, j with $i \neq j$. Prove that

$$\mu^*\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} \mu^*(E_i).$$

- 4. We define variants of the standard Cantor sets, called *thickened Cantor sets*, as follows. The construction depends on a sequence of positive real numbers ℓ_1, ℓ_2, \ldots Take $C'_0 = [0, 1]$, and construct C'_k inductively to be a union of disjoint closed intervals as follows. To form C'_k with $k \ge 1$ start with C'_{k-1} and remove from each of its closed intervals a centrally situated open interval of length ℓ_k . Then define $\mathcal{C}' = \bigcap_{i=1}^{\infty} \mathcal{C}'_k$. Note that the standard Cantor set arises by taking $\ell_1 = 1/3, \ell_2 = 1/9, \ldots$
 - (a) Prove that the ℓ_i can be chosen so that $\mu^*(\mathcal{C}') > 0$.
 - (b) Prove that for any choice of ℓ_i , \mathcal{C}' is nowhere dense, i.e. every interval $(a, b) \subset [0, 1]$ contains a subinterval disjoint from \mathcal{C}' .
- 5. Given a set $E \subset \mathbb{R}$, let

$$U_n^E := \{ x \in \mathbb{R} : d(x, E) < 1/n \}.$$

Find an open, bounded set E such that $\mu^*(E) \neq \lim_{n\to\infty} \mu^*(U_n^E)$. (Hint: use previous problem)